This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994) (Revised by Mario Carneiro, 17-Oct-2016) (Proof shortened by Wolf Lammen, 6-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rexbii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| Assertion | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | 1 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 | 2 | rexbiia | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜓 ) |