This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F contains a sparse set of nonzero values to be summed. The function G is an order isomorphism from the set of nonzero values of F to a 1-based finite sequence, and H collects these nonzero values together. Under these conditions, the sum over the values in H yields the same result as the sum over the original set F . (Contributed by Mario Carneiro, 2-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcoll.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑍 + 𝑘 ) = 𝑘 ) | |
| seqcoll.1b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑘 + 𝑍 ) = 𝑘 ) | ||
| seqcoll.c | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆 ) ) → ( 𝑘 + 𝑛 ) ∈ 𝑆 ) | ||
| seqcoll.a | ⊢ ( 𝜑 → 𝑍 ∈ 𝑆 ) | ||
| seqcoll.2 | ⊢ ( 𝜑 → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) | ||
| seqcoll.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | ||
| seqcoll.4 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqcoll.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | ||
| seqcoll.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) | ||
| seqcoll.7 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ) | ||
| Assertion | seqcoll | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcoll.1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑍 + 𝑘 ) = 𝑘 ) | |
| 2 | seqcoll.1b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑘 + 𝑍 ) = 𝑘 ) | |
| 3 | seqcoll.c | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆 ) ) → ( 𝑘 + 𝑛 ) ∈ 𝑆 ) | |
| 4 | seqcoll.a | ⊢ ( 𝜑 → 𝑍 ∈ 𝑆 ) | |
| 5 | seqcoll.2 | ⊢ ( 𝜑 → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) | |
| 6 | seqcoll.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | |
| 7 | seqcoll.4 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 8 | seqcoll.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | |
| 9 | seqcoll.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) | |
| 10 | seqcoll.7 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ) | |
| 11 | elfznn | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑁 ∈ ℕ ) | |
| 12 | 6 11 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 13 | eleq1 | ⊢ ( 𝑦 = 1 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) | |
| 14 | 2fveq3 | ⊢ ( 𝑦 = 1 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) ) | |
| 15 | fveq2 | ⊢ ( 𝑦 = 1 → ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) | |
| 16 | 14 15 | eqeq12d | ⊢ ( 𝑦 = 1 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) |
| 17 | 13 16 | imbi12d | ⊢ ( 𝑦 = 1 → ( ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ↔ ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑦 = 1 → ( ( 𝜑 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) ) ) |
| 19 | eleq1 | ⊢ ( 𝑦 = 𝑚 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) | |
| 20 | 2fveq3 | ⊢ ( 𝑦 = 𝑚 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) ) | |
| 21 | fveq2 | ⊢ ( 𝑦 = 𝑚 → ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) | |
| 22 | 20 21 | eqeq12d | ⊢ ( 𝑦 = 𝑚 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) |
| 23 | 19 22 | imbi12d | ⊢ ( 𝑦 = 𝑚 → ( ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ↔ ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑦 = 𝑚 → ( ( 𝜑 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) ) ) |
| 25 | eleq1 | ⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) | |
| 26 | 2fveq3 | ⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) | |
| 27 | fveq2 | ⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) | |
| 28 | 26 27 | eqeq12d | ⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) |
| 29 | 25 28 | imbi12d | ⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ↔ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 30 | 29 | imbi2d | ⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( ( 𝜑 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) ) |
| 31 | eleq1 | ⊢ ( 𝑦 = 𝑁 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) | |
| 32 | 2fveq3 | ⊢ ( 𝑦 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) ) | |
| 33 | fveq2 | ⊢ ( 𝑦 = 𝑁 → ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) | |
| 34 | 32 33 | eqeq12d | ⊢ ( 𝑦 = 𝑁 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) ) |
| 35 | 31 34 | imbi12d | ⊢ ( 𝑦 = 𝑁 → ( ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ↔ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) ) ) |
| 36 | 35 | imbi2d | ⊢ ( 𝑦 = 𝑁 → ( ( 𝜑 → ( 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) ) ) ) |
| 37 | isof1o | ⊢ ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | |
| 38 | 5 37 | syl | ⊢ ( 𝜑 → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
| 39 | f1of | ⊢ ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | |
| 40 | 38 39 | syl | ⊢ ( 𝜑 → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 41 | elfzuz2 | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) | |
| 42 | 6 41 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 43 | eluzfz1 | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | |
| 44 | 42 43 | syl | ⊢ ( 𝜑 → 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 45 | 40 44 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ 𝐴 ) |
| 46 | 7 45 | sseldd | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 47 | eluzle | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ≤ ( ♯ ‘ 𝐴 ) ) | |
| 48 | 42 47 | syl | ⊢ ( 𝜑 → 1 ≤ ( ♯ ‘ 𝐴 ) ) |
| 49 | fzssz | ⊢ ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℤ | |
| 50 | zssre | ⊢ ℤ ⊆ ℝ | |
| 51 | 49 50 | sstri | ⊢ ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ |
| 52 | 51 | a1i | ⊢ ( 𝜑 → ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ ) |
| 53 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 54 | 52 53 | sstrdi | ⊢ ( 𝜑 → ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* ) |
| 55 | eluzelre | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℝ ) | |
| 56 | 55 | ssriv | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
| 57 | 7 56 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 58 | 57 53 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 59 | eluzfz2 | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | |
| 60 | 42 59 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 61 | leisorel | ⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ) ∧ ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) | |
| 62 | 5 54 58 44 60 61 | syl122anc | ⊢ ( 𝜑 → ( 1 ≤ ( ♯ ‘ 𝐴 ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 63 | 48 62 | mpbid | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 64 | 40 60 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ 𝐴 ) |
| 65 | 7 64 | sseldd | ⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 66 | eluzelz | ⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) | |
| 67 | 65 66 | syl | ⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) |
| 68 | elfz5 | ⊢ ( ( ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) | |
| 69 | 46 67 68 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 70 | 63 69 | mpbird | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 71 | fveq2 | ⊢ ( 𝑘 = ( 𝐺 ‘ 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) | |
| 72 | 71 | eleq1d | ⊢ ( 𝑘 = ( 𝐺 ‘ 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ↔ ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ∈ 𝑆 ) ) |
| 73 | 72 | imbi2d | ⊢ ( 𝑘 = ( 𝐺 ‘ 1 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ∈ 𝑆 ) ) ) |
| 74 | 8 | expcom | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) → ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) ) |
| 75 | 73 74 | vtoclga | ⊢ ( ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ∈ 𝑆 ) ) |
| 76 | 70 75 | mpcom | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ∈ 𝑆 ) |
| 77 | eluzelz | ⊢ ( ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 ‘ 1 ) ∈ ℤ ) | |
| 78 | 46 77 | syl | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ℤ ) |
| 79 | peano2zm | ⊢ ( ( 𝐺 ‘ 1 ) ∈ ℤ → ( ( 𝐺 ‘ 1 ) − 1 ) ∈ ℤ ) | |
| 80 | 78 79 | syl | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 1 ) − 1 ) ∈ ℤ ) |
| 81 | 80 | zred | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 1 ) − 1 ) ∈ ℝ ) |
| 82 | 78 | zred | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ℝ ) |
| 83 | 67 | zred | ⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
| 84 | 82 | lem1d | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 1 ) − 1 ) ≤ ( 𝐺 ‘ 1 ) ) |
| 85 | 81 82 83 84 63 | letrd | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 1 ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 86 | eluz | ⊢ ( ( ( ( 𝐺 ‘ 1 ) − 1 ) ∈ ℤ ∧ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ 1 ) − 1 ) ) ↔ ( ( 𝐺 ‘ 1 ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) | |
| 87 | 80 67 86 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ 1 ) − 1 ) ) ↔ ( ( 𝐺 ‘ 1 ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 88 | 85 87 | mpbird | ⊢ ( 𝜑 → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ 1 ) − 1 ) ) ) |
| 89 | fzss2 | ⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ 1 ) − 1 ) ) → ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ⊆ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) | |
| 90 | 88 89 | syl | ⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ⊆ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 91 | 90 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 92 | eluzel2 | ⊢ ( ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 93 | 46 92 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 94 | elfzm11 | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐺 ‘ 1 ) ∈ ℤ ) → ( 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < ( 𝐺 ‘ 1 ) ) ) ) | |
| 95 | 93 78 94 | syl2anc | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < ( 𝐺 ‘ 1 ) ) ) ) |
| 96 | simp3 | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < ( 𝐺 ‘ 1 ) ) → 𝑘 < ( 𝐺 ‘ 1 ) ) | |
| 97 | 82 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ 1 ) ∈ ℝ ) |
| 98 | 57 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ℝ ) |
| 99 | f1ocnv | ⊢ ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | |
| 100 | 38 99 | syl | ⊢ ( 𝜑 → ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 101 | f1of | ⊢ ( ◡ 𝐺 : 𝐴 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ◡ 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | |
| 102 | 100 101 | syl | ⊢ ( 𝜑 → ◡ 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 103 | 102 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 104 | elfznn | ⊢ ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℕ ) | |
| 105 | 103 104 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℕ ) |
| 106 | 105 | nnge1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 ≤ ( ◡ 𝐺 ‘ 𝑘 ) ) |
| 107 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
| 108 | 54 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* ) |
| 109 | 58 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐴 ⊆ ℝ* ) |
| 110 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 111 | leisorel | ⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ) ∧ ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 1 ≤ ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) | |
| 112 | 107 108 109 110 103 111 | syl122anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 1 ≤ ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
| 113 | 106 112 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ 1 ) ≤ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
| 114 | f1ocnvfv2 | ⊢ ( ( 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) | |
| 115 | 38 114 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) |
| 116 | 113 115 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ 1 ) ≤ 𝑘 ) |
| 117 | 97 98 116 | lensymd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝑘 < ( 𝐺 ‘ 1 ) ) |
| 118 | 117 | ex | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → ¬ 𝑘 < ( 𝐺 ‘ 1 ) ) ) |
| 119 | 118 | con2d | ⊢ ( 𝜑 → ( 𝑘 < ( 𝐺 ‘ 1 ) → ¬ 𝑘 ∈ 𝐴 ) ) |
| 120 | 96 119 | syl5 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < ( 𝐺 ‘ 1 ) ) → ¬ 𝑘 ∈ 𝐴 ) ) |
| 121 | 95 120 | sylbid | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) → ¬ 𝑘 ∈ 𝐴 ) ) |
| 122 | 121 | imp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ) → ¬ 𝑘 ∈ 𝐴 ) |
| 123 | 91 122 | eldifd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ) → 𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) |
| 124 | 123 9 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ( 𝐺 ‘ 1 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
| 125 | 1 4 46 76 124 | seqid | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) = seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ) |
| 126 | 125 | fveq1d | ⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) ) |
| 127 | uzid | ⊢ ( ( 𝐺 ‘ 1 ) ∈ ℤ → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) | |
| 128 | 78 127 | syl | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) |
| 129 | 128 | fvresd | ⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) ) |
| 130 | seq1 | ⊢ ( ( 𝐺 ‘ 1 ) ∈ ℤ → ( seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) | |
| 131 | 78 130 | syl | ⊢ ( 𝜑 → ( seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) |
| 132 | fveq2 | ⊢ ( 𝑛 = 1 → ( 𝐻 ‘ 𝑛 ) = ( 𝐻 ‘ 1 ) ) | |
| 133 | 2fveq3 | ⊢ ( 𝑛 = 1 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) | |
| 134 | 132 133 | eqeq12d | ⊢ ( 𝑛 = 1 → ( ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ↔ ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) ) |
| 135 | 134 | imbi2d | ⊢ ( 𝑛 = 1 → ( ( 𝜑 → ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) ) ) |
| 136 | 10 | expcom | ⊢ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝜑 → ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 137 | 135 136 | vtoclga | ⊢ ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) ) |
| 138 | 44 137 | mpcom | ⊢ ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) |
| 139 | 131 138 | eqtr4d | ⊢ ( 𝜑 → ( seq ( 𝐺 ‘ 1 ) ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐻 ‘ 1 ) ) |
| 140 | 126 129 139 | 3eqtr3d | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐻 ‘ 1 ) ) |
| 141 | 1z | ⊢ 1 ∈ ℤ | |
| 142 | seq1 | ⊢ ( 1 ∈ ℤ → ( seq 1 ( + , 𝐻 ) ‘ 1 ) = ( 𝐻 ‘ 1 ) ) | |
| 143 | 141 142 | ax-mp | ⊢ ( seq 1 ( + , 𝐻 ) ‘ 1 ) = ( 𝐻 ‘ 1 ) |
| 144 | 140 143 | eqtr4di | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) |
| 145 | 144 | a1d | ⊢ ( 𝜑 → ( 1 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 1 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) |
| 146 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℕ ) | |
| 147 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 148 | 146 147 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
| 149 | nnz | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) | |
| 150 | 149 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℤ ) |
| 151 | elfzuz3 | ⊢ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) | |
| 152 | 151 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) |
| 153 | peano2uzr | ⊢ ( ( 𝑚 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑚 ) ) | |
| 154 | 150 152 153 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑚 ) ) |
| 155 | elfzuzb | ⊢ ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( 𝑚 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑚 ) ) ) | |
| 156 | 148 154 155 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 157 | 156 | ex | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) |
| 158 | 157 | imim1d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) ) |
| 159 | oveq1 | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) ) | |
| 160 | 2 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑘 + 𝑍 ) = 𝑘 ) |
| 161 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 162 | 40 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 163 | 162 156 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ 𝑚 ) ∈ 𝐴 ) |
| 164 | 161 163 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ 𝑚 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 165 | nnre | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) | |
| 166 | 165 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℝ ) |
| 167 | 166 | ltp1d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑚 < ( 𝑚 + 1 ) ) |
| 168 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
| 169 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) | |
| 170 | isorel | ⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝑚 < ( 𝑚 + 1 ) ↔ ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) | |
| 171 | 168 156 169 170 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑚 < ( 𝑚 + 1 ) ↔ ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
| 172 | 167 171 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) |
| 173 | eluzelz | ⊢ ( ( 𝐺 ‘ 𝑚 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 ‘ 𝑚 ) ∈ ℤ ) | |
| 174 | 164 173 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ 𝑚 ) ∈ ℤ ) |
| 175 | 162 169 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ 𝐴 ) |
| 176 | 161 175 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 177 | eluzelz | ⊢ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ ) | |
| 178 | 176 177 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ ) |
| 179 | zltlem1 | ⊢ ( ( ( 𝐺 ‘ 𝑚 ) ∈ ℤ ∧ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ ) → ( ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ ( 𝐺 ‘ 𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) | |
| 180 | 174 178 179 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ ( 𝐺 ‘ 𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
| 181 | 172 180 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ 𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) |
| 182 | peano2zm | ⊢ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℤ ) | |
| 183 | 178 182 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℤ ) |
| 184 | eluz | ⊢ ( ( ( 𝐺 ‘ 𝑚 ) ∈ ℤ ∧ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℤ ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ↔ ( 𝐺 ‘ 𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) | |
| 185 | 174 183 184 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ↔ ( 𝐺 ‘ 𝑚 ) ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
| 186 | 181 185 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ) |
| 187 | 183 | zred | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℝ ) |
| 188 | 178 | zred | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℝ ) |
| 189 | 83 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℝ ) |
| 190 | 188 | lem1d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ≤ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) |
| 191 | elfzle2 | ⊢ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝑚 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ) | |
| 192 | 191 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑚 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ) |
| 193 | 54 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* ) |
| 194 | 58 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝐴 ⊆ ℝ* ) |
| 195 | 60 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 196 | leisorel | ⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ℝ* ∧ 𝐴 ⊆ ℝ* ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( 𝑚 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ↔ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) | |
| 197 | 168 193 194 169 195 196 | syl122anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑚 + 1 ) ≤ ( ♯ ‘ 𝐴 ) ↔ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 198 | 192 197 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 199 | 187 188 189 190 198 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 200 | 67 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) |
| 201 | eluz | ⊢ ( ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ℤ ∧ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ↔ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) | |
| 202 | 183 200 201 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ↔ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ≤ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 203 | 199 202 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
| 204 | uztrn | ⊢ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ∧ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ) | |
| 205 | 203 186 204 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ) |
| 206 | fzss2 | ⊢ ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) → ( 𝑀 ... ( 𝐺 ‘ 𝑚 ) ) ⊆ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) | |
| 207 | 205 206 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑀 ... ( 𝐺 ‘ 𝑚 ) ) ⊆ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 208 | 207 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑚 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 209 | 8 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
| 210 | 208 209 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑚 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
| 211 | 3 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ ( 𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆 ) ) → ( 𝑘 + 𝑛 ) ∈ 𝑆 ) |
| 212 | 164 210 211 | seqcl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) ∈ 𝑆 ) |
| 213 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → 𝜑 ) | |
| 214 | elfzuz | ⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ) ) | |
| 215 | peano2uz | ⊢ ( ( 𝐺 ‘ 𝑚 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 216 | 164 215 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 217 | uztrn | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ) ∧ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 218 | 214 216 217 | syl2anr | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 219 | elfzuz3 | ⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) | |
| 220 | uztrn | ⊢ ( ( ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ∧ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ) | |
| 221 | 203 219 220 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 222 | elfzuzb | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) | |
| 223 | 218 221 222 | sylanbrc | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 224 | 149 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝑚 ∈ ℤ ) |
| 225 | 102 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ◡ 𝐺 : 𝐴 ⟶ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 226 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝑘 ∈ 𝐴 ) | |
| 227 | 225 226 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 228 | 227 | elfzelzd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℤ ) |
| 229 | btwnnz | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ) → ¬ ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℤ ) | |
| 230 | 229 | 3expib | ⊢ ( 𝑚 ∈ ℤ → ( ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ) → ¬ ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℤ ) ) |
| 231 | 230 | con2d | ⊢ ( 𝑚 ∈ ℤ → ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ℤ → ¬ ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ) ) ) |
| 232 | 224 228 231 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ¬ ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ) ) |
| 233 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
| 234 | 156 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 235 | isorel | ⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) | |
| 236 | 233 234 227 235 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
| 237 | 38 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝐺 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
| 238 | 237 226 114 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) |
| 239 | 238 | breq2d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑚 ) < ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑚 ) < 𝑘 ) ) |
| 240 | 174 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐺 ‘ 𝑚 ) ∈ ℤ ) |
| 241 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 242 | 241 226 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 243 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 244 | 242 243 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → 𝑘 ∈ ℤ ) |
| 245 | zltp1le | ⊢ ( ( ( 𝐺 ‘ 𝑚 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝐺 ‘ 𝑚 ) < 𝑘 ↔ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ) ) | |
| 246 | 240 244 245 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑚 ) < 𝑘 ↔ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ) ) |
| 247 | 236 239 246 | 3bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ↔ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ) ) |
| 248 | 169 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 249 | isorel | ⊢ ( ( 𝐺 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ∧ ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ↔ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) | |
| 250 | 233 227 248 249 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ↔ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
| 251 | 238 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ 𝑘 < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
| 252 | 178 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ ) |
| 253 | zltlem1 | ⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℤ ) → ( 𝑘 < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) | |
| 254 | 244 252 253 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝑘 < ( 𝐺 ‘ ( 𝑚 + 1 ) ) ↔ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
| 255 | 250 251 254 | 3bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ↔ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
| 256 | 247 255 | anbi12d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝑚 < ( ◡ 𝐺 ‘ 𝑘 ) ∧ ( ◡ 𝐺 ‘ 𝑘 ) < ( 𝑚 + 1 ) ) ↔ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ∧ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) ) |
| 257 | 232 256 | mtbid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) ) → ¬ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ∧ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
| 258 | 257 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑘 ∈ 𝐴 → ¬ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ∧ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) ) |
| 259 | 258 | con2d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ∧ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → ¬ 𝑘 ∈ 𝐴 ) ) |
| 260 | elfzle1 | ⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ) | |
| 261 | elfzle2 | ⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) | |
| 262 | 260 261 | jca | ⊢ ( 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) → ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 𝑘 ∧ 𝑘 ≤ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
| 263 | 259 262 | impel | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → ¬ 𝑘 ∈ 𝐴 ) |
| 264 | 223 263 | eldifd | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → 𝑘 ∈ ( ( 𝑀 ... ( 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) ) ∖ 𝐴 ) ) |
| 265 | 213 264 9 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝐺 ‘ 𝑚 ) + 1 ) ... ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
| 266 | 160 164 186 212 265 | seqid2 | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) ) |
| 267 | 266 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 268 | fveq2 | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝐻 ‘ 𝑛 ) = ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) | |
| 269 | 2fveq3 | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) | |
| 270 | 268 269 | eqeq12d | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ↔ ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 271 | 270 | imbi2d | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝜑 → ( 𝐻 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( 𝜑 → ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) ) |
| 272 | 271 136 | vtoclga | ⊢ ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( 𝜑 → ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 273 | 272 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
| 274 | 273 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐻 ‘ ( 𝑚 + 1 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) |
| 275 | 274 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 276 | 93 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → 𝑀 ∈ ℤ ) |
| 277 | 178 | zcnd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℂ ) |
| 278 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 279 | npcan | ⊢ ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) + 1 ) = ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) | |
| 280 | 277 278 279 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) + 1 ) = ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) |
| 281 | uztrn | ⊢ ( ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑚 ) ) ∧ ( 𝐺 ‘ 𝑚 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 282 | 186 164 281 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 283 | eluzp1p1 | ⊢ ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | |
| 284 | 282 283 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 285 | 280 284 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 286 | seqm1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) | |
| 287 | 276 285 286 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝐺 ‘ ( 𝑚 + 1 ) ) − 1 ) ) + ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 288 | 267 275 287 | 3eqtr4rd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) ) |
| 289 | seqp1 | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) ) | |
| 290 | 148 289 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) ) |
| 291 | 288 290 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) + ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 292 | 159 291 | imbitrrid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) |
| 293 | 292 | ex | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 294 | 293 | a2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 295 | 158 294 | syld | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 296 | 295 | expcom | ⊢ ( 𝑚 ∈ ℕ → ( 𝜑 → ( ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) ) |
| 297 | 296 | a2d | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝜑 → ( 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑚 ) ) ) → ( 𝜑 → ( ( 𝑚 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ ( 𝑚 + 1 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑚 + 1 ) ) ) ) ) ) |
| 298 | 18 24 30 36 145 297 | nnind | ⊢ ( 𝑁 ∈ ℕ → ( 𝜑 → ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) ) ) |
| 299 | 12 298 | mpcom | ⊢ ( 𝜑 → ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) ) |
| 300 | 6 299 | mpd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝐺 ‘ 𝑁 ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑁 ) ) |