This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | peano2uzr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelcn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → 𝑁 ∈ ℂ ) | |
| 2 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 3 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 6 | eluzp1m1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 7 | peano2uz | ⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | 5 8 | eqeltrrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |