This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F contains a sparse set of nonzero values to be summed. The function G is an order isomorphism from the set of nonzero values of F to a 1-based finite sequence, and H collects these nonzero values together. Under these conditions, the sum over the values in H yields the same result as the sum over the original set F . (Contributed by Mario Carneiro, 2-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcoll.1 | |- ( ( ph /\ k e. S ) -> ( Z .+ k ) = k ) |
|
| seqcoll.1b | |- ( ( ph /\ k e. S ) -> ( k .+ Z ) = k ) |
||
| seqcoll.c | |- ( ( ph /\ ( k e. S /\ n e. S ) ) -> ( k .+ n ) e. S ) |
||
| seqcoll.a | |- ( ph -> Z e. S ) |
||
| seqcoll.2 | |- ( ph -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
||
| seqcoll.3 | |- ( ph -> N e. ( 1 ... ( # ` A ) ) ) |
||
| seqcoll.4 | |- ( ph -> A C_ ( ZZ>= ` M ) ) |
||
| seqcoll.5 | |- ( ( ph /\ k e. ( M ... ( G ` ( # ` A ) ) ) ) -> ( F ` k ) e. S ) |
||
| seqcoll.6 | |- ( ( ph /\ k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) -> ( F ` k ) = Z ) |
||
| seqcoll.7 | |- ( ( ph /\ n e. ( 1 ... ( # ` A ) ) ) -> ( H ` n ) = ( F ` ( G ` n ) ) ) |
||
| Assertion | seqcoll | |- ( ph -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcoll.1 | |- ( ( ph /\ k e. S ) -> ( Z .+ k ) = k ) |
|
| 2 | seqcoll.1b | |- ( ( ph /\ k e. S ) -> ( k .+ Z ) = k ) |
|
| 3 | seqcoll.c | |- ( ( ph /\ ( k e. S /\ n e. S ) ) -> ( k .+ n ) e. S ) |
|
| 4 | seqcoll.a | |- ( ph -> Z e. S ) |
|
| 5 | seqcoll.2 | |- ( ph -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
|
| 6 | seqcoll.3 | |- ( ph -> N e. ( 1 ... ( # ` A ) ) ) |
|
| 7 | seqcoll.4 | |- ( ph -> A C_ ( ZZ>= ` M ) ) |
|
| 8 | seqcoll.5 | |- ( ( ph /\ k e. ( M ... ( G ` ( # ` A ) ) ) ) -> ( F ` k ) e. S ) |
|
| 9 | seqcoll.6 | |- ( ( ph /\ k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) -> ( F ` k ) = Z ) |
|
| 10 | seqcoll.7 | |- ( ( ph /\ n e. ( 1 ... ( # ` A ) ) ) -> ( H ` n ) = ( F ` ( G ` n ) ) ) |
|
| 11 | elfznn | |- ( N e. ( 1 ... ( # ` A ) ) -> N e. NN ) |
|
| 12 | 6 11 | syl | |- ( ph -> N e. NN ) |
| 13 | eleq1 | |- ( y = 1 -> ( y e. ( 1 ... ( # ` A ) ) <-> 1 e. ( 1 ... ( # ` A ) ) ) ) |
|
| 14 | 2fveq3 | |- ( y = 1 -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq M ( .+ , F ) ` ( G ` 1 ) ) ) |
|
| 15 | fveq2 | |- ( y = 1 -> ( seq 1 ( .+ , H ) ` y ) = ( seq 1 ( .+ , H ) ` 1 ) ) |
|
| 16 | 14 15 | eqeq12d | |- ( y = 1 -> ( ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) <-> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) ) |
| 17 | 13 16 | imbi12d | |- ( y = 1 -> ( ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) <-> ( 1 e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) ) ) |
| 18 | 17 | imbi2d | |- ( y = 1 -> ( ( ph -> ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) ) <-> ( ph -> ( 1 e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) ) ) ) |
| 19 | eleq1 | |- ( y = m -> ( y e. ( 1 ... ( # ` A ) ) <-> m e. ( 1 ... ( # ` A ) ) ) ) |
|
| 20 | 2fveq3 | |- ( y = m -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq M ( .+ , F ) ` ( G ` m ) ) ) |
|
| 21 | fveq2 | |- ( y = m -> ( seq 1 ( .+ , H ) ` y ) = ( seq 1 ( .+ , H ) ` m ) ) |
|
| 22 | 20 21 | eqeq12d | |- ( y = m -> ( ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) <-> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) |
| 23 | 19 22 | imbi12d | |- ( y = m -> ( ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) <-> ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) ) |
| 24 | 23 | imbi2d | |- ( y = m -> ( ( ph -> ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) ) <-> ( ph -> ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) ) ) |
| 25 | eleq1 | |- ( y = ( m + 1 ) -> ( y e. ( 1 ... ( # ` A ) ) <-> ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) ) |
|
| 26 | 2fveq3 | |- ( y = ( m + 1 ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) ) |
|
| 27 | fveq2 | |- ( y = ( m + 1 ) -> ( seq 1 ( .+ , H ) ` y ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) |
|
| 28 | 26 27 | eqeq12d | |- ( y = ( m + 1 ) -> ( ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) <-> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) |
| 29 | 25 28 | imbi12d | |- ( y = ( m + 1 ) -> ( ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) <-> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) |
| 30 | 29 | imbi2d | |- ( y = ( m + 1 ) -> ( ( ph -> ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) ) <-> ( ph -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) ) |
| 31 | eleq1 | |- ( y = N -> ( y e. ( 1 ... ( # ` A ) ) <-> N e. ( 1 ... ( # ` A ) ) ) ) |
|
| 32 | 2fveq3 | |- ( y = N -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq M ( .+ , F ) ` ( G ` N ) ) ) |
|
| 33 | fveq2 | |- ( y = N -> ( seq 1 ( .+ , H ) ` y ) = ( seq 1 ( .+ , H ) ` N ) ) |
|
| 34 | 32 33 | eqeq12d | |- ( y = N -> ( ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) <-> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) |
| 35 | 31 34 | imbi12d | |- ( y = N -> ( ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) <-> ( N e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) ) |
| 36 | 35 | imbi2d | |- ( y = N -> ( ( ph -> ( y e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` y ) ) = ( seq 1 ( .+ , H ) ` y ) ) ) <-> ( ph -> ( N e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) ) ) |
| 37 | isof1o | |- ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 38 | 5 37 | syl | |- ( ph -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 39 | f1of | |- ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> G : ( 1 ... ( # ` A ) ) --> A ) |
|
| 40 | 38 39 | syl | |- ( ph -> G : ( 1 ... ( # ` A ) ) --> A ) |
| 41 | elfzuz2 | |- ( N e. ( 1 ... ( # ` A ) ) -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
|
| 42 | 6 41 | syl | |- ( ph -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 43 | eluzfz1 | |- ( ( # ` A ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( # ` A ) ) ) |
|
| 44 | 42 43 | syl | |- ( ph -> 1 e. ( 1 ... ( # ` A ) ) ) |
| 45 | 40 44 | ffvelcdmd | |- ( ph -> ( G ` 1 ) e. A ) |
| 46 | 7 45 | sseldd | |- ( ph -> ( G ` 1 ) e. ( ZZ>= ` M ) ) |
| 47 | eluzle | |- ( ( # ` A ) e. ( ZZ>= ` 1 ) -> 1 <_ ( # ` A ) ) |
|
| 48 | 42 47 | syl | |- ( ph -> 1 <_ ( # ` A ) ) |
| 49 | fzssz | |- ( 1 ... ( # ` A ) ) C_ ZZ |
|
| 50 | zssre | |- ZZ C_ RR |
|
| 51 | 49 50 | sstri | |- ( 1 ... ( # ` A ) ) C_ RR |
| 52 | 51 | a1i | |- ( ph -> ( 1 ... ( # ` A ) ) C_ RR ) |
| 53 | ressxr | |- RR C_ RR* |
|
| 54 | 52 53 | sstrdi | |- ( ph -> ( 1 ... ( # ` A ) ) C_ RR* ) |
| 55 | eluzelre | |- ( k e. ( ZZ>= ` M ) -> k e. RR ) |
|
| 56 | 55 | ssriv | |- ( ZZ>= ` M ) C_ RR |
| 57 | 7 56 | sstrdi | |- ( ph -> A C_ RR ) |
| 58 | 57 53 | sstrdi | |- ( ph -> A C_ RR* ) |
| 59 | eluzfz2 | |- ( ( # ` A ) e. ( ZZ>= ` 1 ) -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
|
| 60 | 42 59 | syl | |- ( ph -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
| 61 | leisorel | |- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( 1 ... ( # ` A ) ) C_ RR* /\ A C_ RR* ) /\ ( 1 e. ( 1 ... ( # ` A ) ) /\ ( # ` A ) e. ( 1 ... ( # ` A ) ) ) ) -> ( 1 <_ ( # ` A ) <-> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) ) |
|
| 62 | 5 54 58 44 60 61 | syl122anc | |- ( ph -> ( 1 <_ ( # ` A ) <-> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) ) |
| 63 | 48 62 | mpbid | |- ( ph -> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) |
| 64 | 40 60 | ffvelcdmd | |- ( ph -> ( G ` ( # ` A ) ) e. A ) |
| 65 | 7 64 | sseldd | |- ( ph -> ( G ` ( # ` A ) ) e. ( ZZ>= ` M ) ) |
| 66 | eluzelz | |- ( ( G ` ( # ` A ) ) e. ( ZZ>= ` M ) -> ( G ` ( # ` A ) ) e. ZZ ) |
|
| 67 | 65 66 | syl | |- ( ph -> ( G ` ( # ` A ) ) e. ZZ ) |
| 68 | elfz5 | |- ( ( ( G ` 1 ) e. ( ZZ>= ` M ) /\ ( G ` ( # ` A ) ) e. ZZ ) -> ( ( G ` 1 ) e. ( M ... ( G ` ( # ` A ) ) ) <-> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) ) |
|
| 69 | 46 67 68 | syl2anc | |- ( ph -> ( ( G ` 1 ) e. ( M ... ( G ` ( # ` A ) ) ) <-> ( G ` 1 ) <_ ( G ` ( # ` A ) ) ) ) |
| 70 | 63 69 | mpbird | |- ( ph -> ( G ` 1 ) e. ( M ... ( G ` ( # ` A ) ) ) ) |
| 71 | fveq2 | |- ( k = ( G ` 1 ) -> ( F ` k ) = ( F ` ( G ` 1 ) ) ) |
|
| 72 | 71 | eleq1d | |- ( k = ( G ` 1 ) -> ( ( F ` k ) e. S <-> ( F ` ( G ` 1 ) ) e. S ) ) |
| 73 | 72 | imbi2d | |- ( k = ( G ` 1 ) -> ( ( ph -> ( F ` k ) e. S ) <-> ( ph -> ( F ` ( G ` 1 ) ) e. S ) ) ) |
| 74 | 8 | expcom | |- ( k e. ( M ... ( G ` ( # ` A ) ) ) -> ( ph -> ( F ` k ) e. S ) ) |
| 75 | 73 74 | vtoclga | |- ( ( G ` 1 ) e. ( M ... ( G ` ( # ` A ) ) ) -> ( ph -> ( F ` ( G ` 1 ) ) e. S ) ) |
| 76 | 70 75 | mpcom | |- ( ph -> ( F ` ( G ` 1 ) ) e. S ) |
| 77 | eluzelz | |- ( ( G ` 1 ) e. ( ZZ>= ` M ) -> ( G ` 1 ) e. ZZ ) |
|
| 78 | 46 77 | syl | |- ( ph -> ( G ` 1 ) e. ZZ ) |
| 79 | peano2zm | |- ( ( G ` 1 ) e. ZZ -> ( ( G ` 1 ) - 1 ) e. ZZ ) |
|
| 80 | 78 79 | syl | |- ( ph -> ( ( G ` 1 ) - 1 ) e. ZZ ) |
| 81 | 80 | zred | |- ( ph -> ( ( G ` 1 ) - 1 ) e. RR ) |
| 82 | 78 | zred | |- ( ph -> ( G ` 1 ) e. RR ) |
| 83 | 67 | zred | |- ( ph -> ( G ` ( # ` A ) ) e. RR ) |
| 84 | 82 | lem1d | |- ( ph -> ( ( G ` 1 ) - 1 ) <_ ( G ` 1 ) ) |
| 85 | 81 82 83 84 63 | letrd | |- ( ph -> ( ( G ` 1 ) - 1 ) <_ ( G ` ( # ` A ) ) ) |
| 86 | eluz | |- ( ( ( ( G ` 1 ) - 1 ) e. ZZ /\ ( G ` ( # ` A ) ) e. ZZ ) -> ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` 1 ) - 1 ) ) <-> ( ( G ` 1 ) - 1 ) <_ ( G ` ( # ` A ) ) ) ) |
|
| 87 | 80 67 86 | syl2anc | |- ( ph -> ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` 1 ) - 1 ) ) <-> ( ( G ` 1 ) - 1 ) <_ ( G ` ( # ` A ) ) ) ) |
| 88 | 85 87 | mpbird | |- ( ph -> ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` 1 ) - 1 ) ) ) |
| 89 | fzss2 | |- ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` 1 ) - 1 ) ) -> ( M ... ( ( G ` 1 ) - 1 ) ) C_ ( M ... ( G ` ( # ` A ) ) ) ) |
|
| 90 | 88 89 | syl | |- ( ph -> ( M ... ( ( G ` 1 ) - 1 ) ) C_ ( M ... ( G ` ( # ` A ) ) ) ) |
| 91 | 90 | sselda | |- ( ( ph /\ k e. ( M ... ( ( G ` 1 ) - 1 ) ) ) -> k e. ( M ... ( G ` ( # ` A ) ) ) ) |
| 92 | eluzel2 | |- ( ( G ` 1 ) e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 93 | 46 92 | syl | |- ( ph -> M e. ZZ ) |
| 94 | elfzm11 | |- ( ( M e. ZZ /\ ( G ` 1 ) e. ZZ ) -> ( k e. ( M ... ( ( G ` 1 ) - 1 ) ) <-> ( k e. ZZ /\ M <_ k /\ k < ( G ` 1 ) ) ) ) |
|
| 95 | 93 78 94 | syl2anc | |- ( ph -> ( k e. ( M ... ( ( G ` 1 ) - 1 ) ) <-> ( k e. ZZ /\ M <_ k /\ k < ( G ` 1 ) ) ) ) |
| 96 | simp3 | |- ( ( k e. ZZ /\ M <_ k /\ k < ( G ` 1 ) ) -> k < ( G ` 1 ) ) |
|
| 97 | 82 | adantr | |- ( ( ph /\ k e. A ) -> ( G ` 1 ) e. RR ) |
| 98 | 57 | sselda | |- ( ( ph /\ k e. A ) -> k e. RR ) |
| 99 | f1ocnv | |- ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) ) |
|
| 100 | 38 99 | syl | |- ( ph -> `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) ) |
| 101 | f1of | |- ( `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) -> `' G : A --> ( 1 ... ( # ` A ) ) ) |
|
| 102 | 100 101 | syl | |- ( ph -> `' G : A --> ( 1 ... ( # ` A ) ) ) |
| 103 | 102 | ffvelcdmda | |- ( ( ph /\ k e. A ) -> ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) |
| 104 | elfznn | |- ( ( `' G ` k ) e. ( 1 ... ( # ` A ) ) -> ( `' G ` k ) e. NN ) |
|
| 105 | 103 104 | syl | |- ( ( ph /\ k e. A ) -> ( `' G ` k ) e. NN ) |
| 106 | 105 | nnge1d | |- ( ( ph /\ k e. A ) -> 1 <_ ( `' G ` k ) ) |
| 107 | 5 | adantr | |- ( ( ph /\ k e. A ) -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 108 | 54 | adantr | |- ( ( ph /\ k e. A ) -> ( 1 ... ( # ` A ) ) C_ RR* ) |
| 109 | 58 | adantr | |- ( ( ph /\ k e. A ) -> A C_ RR* ) |
| 110 | 44 | adantr | |- ( ( ph /\ k e. A ) -> 1 e. ( 1 ... ( # ` A ) ) ) |
| 111 | leisorel | |- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( 1 ... ( # ` A ) ) C_ RR* /\ A C_ RR* ) /\ ( 1 e. ( 1 ... ( # ` A ) ) /\ ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) ) -> ( 1 <_ ( `' G ` k ) <-> ( G ` 1 ) <_ ( G ` ( `' G ` k ) ) ) ) |
|
| 112 | 107 108 109 110 103 111 | syl122anc | |- ( ( ph /\ k e. A ) -> ( 1 <_ ( `' G ` k ) <-> ( G ` 1 ) <_ ( G ` ( `' G ` k ) ) ) ) |
| 113 | 106 112 | mpbid | |- ( ( ph /\ k e. A ) -> ( G ` 1 ) <_ ( G ` ( `' G ` k ) ) ) |
| 114 | f1ocnvfv2 | |- ( ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ k e. A ) -> ( G ` ( `' G ` k ) ) = k ) |
|
| 115 | 38 114 | sylan | |- ( ( ph /\ k e. A ) -> ( G ` ( `' G ` k ) ) = k ) |
| 116 | 113 115 | breqtrd | |- ( ( ph /\ k e. A ) -> ( G ` 1 ) <_ k ) |
| 117 | 97 98 116 | lensymd | |- ( ( ph /\ k e. A ) -> -. k < ( G ` 1 ) ) |
| 118 | 117 | ex | |- ( ph -> ( k e. A -> -. k < ( G ` 1 ) ) ) |
| 119 | 118 | con2d | |- ( ph -> ( k < ( G ` 1 ) -> -. k e. A ) ) |
| 120 | 96 119 | syl5 | |- ( ph -> ( ( k e. ZZ /\ M <_ k /\ k < ( G ` 1 ) ) -> -. k e. A ) ) |
| 121 | 95 120 | sylbid | |- ( ph -> ( k e. ( M ... ( ( G ` 1 ) - 1 ) ) -> -. k e. A ) ) |
| 122 | 121 | imp | |- ( ( ph /\ k e. ( M ... ( ( G ` 1 ) - 1 ) ) ) -> -. k e. A ) |
| 123 | 91 122 | eldifd | |- ( ( ph /\ k e. ( M ... ( ( G ` 1 ) - 1 ) ) ) -> k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) |
| 124 | 123 9 | syldan | |- ( ( ph /\ k e. ( M ... ( ( G ` 1 ) - 1 ) ) ) -> ( F ` k ) = Z ) |
| 125 | 1 4 46 76 124 | seqid | |- ( ph -> ( seq M ( .+ , F ) |` ( ZZ>= ` ( G ` 1 ) ) ) = seq ( G ` 1 ) ( .+ , F ) ) |
| 126 | 125 | fveq1d | |- ( ph -> ( ( seq M ( .+ , F ) |` ( ZZ>= ` ( G ` 1 ) ) ) ` ( G ` 1 ) ) = ( seq ( G ` 1 ) ( .+ , F ) ` ( G ` 1 ) ) ) |
| 127 | uzid | |- ( ( G ` 1 ) e. ZZ -> ( G ` 1 ) e. ( ZZ>= ` ( G ` 1 ) ) ) |
|
| 128 | 78 127 | syl | |- ( ph -> ( G ` 1 ) e. ( ZZ>= ` ( G ` 1 ) ) ) |
| 129 | 128 | fvresd | |- ( ph -> ( ( seq M ( .+ , F ) |` ( ZZ>= ` ( G ` 1 ) ) ) ` ( G ` 1 ) ) = ( seq M ( .+ , F ) ` ( G ` 1 ) ) ) |
| 130 | seq1 | |- ( ( G ` 1 ) e. ZZ -> ( seq ( G ` 1 ) ( .+ , F ) ` ( G ` 1 ) ) = ( F ` ( G ` 1 ) ) ) |
|
| 131 | 78 130 | syl | |- ( ph -> ( seq ( G ` 1 ) ( .+ , F ) ` ( G ` 1 ) ) = ( F ` ( G ` 1 ) ) ) |
| 132 | fveq2 | |- ( n = 1 -> ( H ` n ) = ( H ` 1 ) ) |
|
| 133 | 2fveq3 | |- ( n = 1 -> ( F ` ( G ` n ) ) = ( F ` ( G ` 1 ) ) ) |
|
| 134 | 132 133 | eqeq12d | |- ( n = 1 -> ( ( H ` n ) = ( F ` ( G ` n ) ) <-> ( H ` 1 ) = ( F ` ( G ` 1 ) ) ) ) |
| 135 | 134 | imbi2d | |- ( n = 1 -> ( ( ph -> ( H ` n ) = ( F ` ( G ` n ) ) ) <-> ( ph -> ( H ` 1 ) = ( F ` ( G ` 1 ) ) ) ) ) |
| 136 | 10 | expcom | |- ( n e. ( 1 ... ( # ` A ) ) -> ( ph -> ( H ` n ) = ( F ` ( G ` n ) ) ) ) |
| 137 | 135 136 | vtoclga | |- ( 1 e. ( 1 ... ( # ` A ) ) -> ( ph -> ( H ` 1 ) = ( F ` ( G ` 1 ) ) ) ) |
| 138 | 44 137 | mpcom | |- ( ph -> ( H ` 1 ) = ( F ` ( G ` 1 ) ) ) |
| 139 | 131 138 | eqtr4d | |- ( ph -> ( seq ( G ` 1 ) ( .+ , F ) ` ( G ` 1 ) ) = ( H ` 1 ) ) |
| 140 | 126 129 139 | 3eqtr3d | |- ( ph -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( H ` 1 ) ) |
| 141 | 1z | |- 1 e. ZZ |
|
| 142 | seq1 | |- ( 1 e. ZZ -> ( seq 1 ( .+ , H ) ` 1 ) = ( H ` 1 ) ) |
|
| 143 | 141 142 | ax-mp | |- ( seq 1 ( .+ , H ) ` 1 ) = ( H ` 1 ) |
| 144 | 140 143 | eqtr4di | |- ( ph -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) |
| 145 | 144 | a1d | |- ( ph -> ( 1 e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` 1 ) ) = ( seq 1 ( .+ , H ) ` 1 ) ) ) |
| 146 | simplr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. NN ) |
|
| 147 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 148 | 146 147 | eleqtrdi | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. ( ZZ>= ` 1 ) ) |
| 149 | nnz | |- ( m e. NN -> m e. ZZ ) |
|
| 150 | 149 | ad2antlr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. ZZ ) |
| 151 | elfzuz3 | |- ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( # ` A ) e. ( ZZ>= ` ( m + 1 ) ) ) |
|
| 152 | 151 | adantl | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( # ` A ) e. ( ZZ>= ` ( m + 1 ) ) ) |
| 153 | peano2uzr | |- ( ( m e. ZZ /\ ( # ` A ) e. ( ZZ>= ` ( m + 1 ) ) ) -> ( # ` A ) e. ( ZZ>= ` m ) ) |
|
| 154 | 150 152 153 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( # ` A ) e. ( ZZ>= ` m ) ) |
| 155 | elfzuzb | |- ( m e. ( 1 ... ( # ` A ) ) <-> ( m e. ( ZZ>= ` 1 ) /\ ( # ` A ) e. ( ZZ>= ` m ) ) ) |
|
| 156 | 148 154 155 | sylanbrc | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. ( 1 ... ( # ` A ) ) ) |
| 157 | 156 | ex | |- ( ( ph /\ m e. NN ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> m e. ( 1 ... ( # ` A ) ) ) ) |
| 158 | 157 | imim1d | |- ( ( ph /\ m e. NN ) -> ( ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) ) |
| 159 | oveq1 | |- ( ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( H ` ( m + 1 ) ) ) = ( ( seq 1 ( .+ , H ) ` m ) .+ ( H ` ( m + 1 ) ) ) ) |
|
| 160 | 2 | ad4ant14 | |- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. S ) -> ( k .+ Z ) = k ) |
| 161 | 7 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> A C_ ( ZZ>= ` M ) ) |
| 162 | 40 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> G : ( 1 ... ( # ` A ) ) --> A ) |
| 163 | 162 156 | ffvelcdmd | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) e. A ) |
| 164 | 161 163 | sseldd | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) e. ( ZZ>= ` M ) ) |
| 165 | nnre | |- ( m e. NN -> m e. RR ) |
|
| 166 | 165 | ad2antlr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m e. RR ) |
| 167 | 166 | ltp1d | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> m < ( m + 1 ) ) |
| 168 | 5 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 169 | simpr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) |
|
| 170 | isorel | |- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( m e. ( 1 ... ( # ` A ) ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) ) -> ( m < ( m + 1 ) <-> ( G ` m ) < ( G ` ( m + 1 ) ) ) ) |
|
| 171 | 168 156 169 170 | syl12anc | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( m < ( m + 1 ) <-> ( G ` m ) < ( G ` ( m + 1 ) ) ) ) |
| 172 | 167 171 | mpbid | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) < ( G ` ( m + 1 ) ) ) |
| 173 | eluzelz | |- ( ( G ` m ) e. ( ZZ>= ` M ) -> ( G ` m ) e. ZZ ) |
|
| 174 | 164 173 | syl | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) e. ZZ ) |
| 175 | 162 169 | ffvelcdmd | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. A ) |
| 176 | 161 175 | sseldd | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. ( ZZ>= ` M ) ) |
| 177 | eluzelz | |- ( ( G ` ( m + 1 ) ) e. ( ZZ>= ` M ) -> ( G ` ( m + 1 ) ) e. ZZ ) |
|
| 178 | 176 177 | syl | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. ZZ ) |
| 179 | zltlem1 | |- ( ( ( G ` m ) e. ZZ /\ ( G ` ( m + 1 ) ) e. ZZ ) -> ( ( G ` m ) < ( G ` ( m + 1 ) ) <-> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
|
| 180 | 174 178 179 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` m ) < ( G ` ( m + 1 ) ) <-> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 181 | 172 180 | mpbid | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) |
| 182 | peano2zm | |- ( ( G ` ( m + 1 ) ) e. ZZ -> ( ( G ` ( m + 1 ) ) - 1 ) e. ZZ ) |
|
| 183 | 178 182 | syl | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ZZ ) |
| 184 | eluz | |- ( ( ( G ` m ) e. ZZ /\ ( ( G ` ( m + 1 ) ) - 1 ) e. ZZ ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) <-> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
|
| 185 | 174 183 184 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) <-> ( G ` m ) <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 186 | 181 185 | mpbird | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) ) |
| 187 | 183 | zred | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. RR ) |
| 188 | 178 | zred | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. RR ) |
| 189 | 83 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( # ` A ) ) e. RR ) |
| 190 | 188 | lem1d | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) <_ ( G ` ( m + 1 ) ) ) |
| 191 | elfzle2 | |- ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( m + 1 ) <_ ( # ` A ) ) |
|
| 192 | 191 | adantl | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( m + 1 ) <_ ( # ` A ) ) |
| 193 | 54 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( 1 ... ( # ` A ) ) C_ RR* ) |
| 194 | 58 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> A C_ RR* ) |
| 195 | 60 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
| 196 | leisorel | |- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( 1 ... ( # ` A ) ) C_ RR* /\ A C_ RR* ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ ( # ` A ) e. ( 1 ... ( # ` A ) ) ) ) -> ( ( m + 1 ) <_ ( # ` A ) <-> ( G ` ( m + 1 ) ) <_ ( G ` ( # ` A ) ) ) ) |
|
| 197 | 168 193 194 169 195 196 | syl122anc | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( m + 1 ) <_ ( # ` A ) <-> ( G ` ( m + 1 ) ) <_ ( G ` ( # ` A ) ) ) ) |
| 198 | 192 197 | mpbid | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) <_ ( G ` ( # ` A ) ) ) |
| 199 | 187 188 189 190 198 | letrd | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) <_ ( G ` ( # ` A ) ) ) |
| 200 | 67 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( # ` A ) ) e. ZZ ) |
| 201 | eluz | |- ( ( ( ( G ` ( m + 1 ) ) - 1 ) e. ZZ /\ ( G ` ( # ` A ) ) e. ZZ ) -> ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) <-> ( ( G ` ( m + 1 ) ) - 1 ) <_ ( G ` ( # ` A ) ) ) ) |
|
| 202 | 183 200 201 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) <-> ( ( G ` ( m + 1 ) ) - 1 ) <_ ( G ` ( # ` A ) ) ) ) |
| 203 | 199 202 | mpbird | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 204 | uztrn | |- ( ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) /\ ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` ( G ` m ) ) ) |
|
| 205 | 203 186 204 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` ( G ` m ) ) ) |
| 206 | fzss2 | |- ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( G ` m ) ) -> ( M ... ( G ` m ) ) C_ ( M ... ( G ` ( # ` A ) ) ) ) |
|
| 207 | 205 206 | syl | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( M ... ( G ` m ) ) C_ ( M ... ( G ` ( # ` A ) ) ) ) |
| 208 | 207 | sselda | |- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( M ... ( G ` m ) ) ) -> k e. ( M ... ( G ` ( # ` A ) ) ) ) |
| 209 | 8 | ad4ant14 | |- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( M ... ( G ` ( # ` A ) ) ) ) -> ( F ` k ) e. S ) |
| 210 | 208 209 | syldan | |- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( M ... ( G ` m ) ) ) -> ( F ` k ) e. S ) |
| 211 | 3 | ad4ant14 | |- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ ( k e. S /\ n e. S ) ) -> ( k .+ n ) e. S ) |
| 212 | 164 210 211 | seqcl | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) e. S ) |
| 213 | simplll | |- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> ph ) |
|
| 214 | elfzuz | |- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> k e. ( ZZ>= ` ( ( G ` m ) + 1 ) ) ) |
|
| 215 | peano2uz | |- ( ( G ` m ) e. ( ZZ>= ` M ) -> ( ( G ` m ) + 1 ) e. ( ZZ>= ` M ) ) |
|
| 216 | 164 215 | syl | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` m ) + 1 ) e. ( ZZ>= ` M ) ) |
| 217 | uztrn | |- ( ( k e. ( ZZ>= ` ( ( G ` m ) + 1 ) ) /\ ( ( G ` m ) + 1 ) e. ( ZZ>= ` M ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 218 | 214 216 217 | syl2anr | |- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> k e. ( ZZ>= ` M ) ) |
| 219 | elfzuz3 | |- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` k ) ) |
|
| 220 | uztrn | |- ( ( ( G ` ( # ` A ) ) e. ( ZZ>= ` ( ( G ` ( m + 1 ) ) - 1 ) ) /\ ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` k ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` k ) ) |
|
| 221 | 203 219 220 | syl2an | |- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> ( G ` ( # ` A ) ) e. ( ZZ>= ` k ) ) |
| 222 | elfzuzb | |- ( k e. ( M ... ( G ` ( # ` A ) ) ) <-> ( k e. ( ZZ>= ` M ) /\ ( G ` ( # ` A ) ) e. ( ZZ>= ` k ) ) ) |
|
| 223 | 218 221 222 | sylanbrc | |- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> k e. ( M ... ( G ` ( # ` A ) ) ) ) |
| 224 | 149 | ad2antlr | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> m e. ZZ ) |
| 225 | 102 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> `' G : A --> ( 1 ... ( # ` A ) ) ) |
| 226 | simprr | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> k e. A ) |
|
| 227 | 225 226 | ffvelcdmd | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) |
| 228 | 227 | elfzelzd | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( `' G ` k ) e. ZZ ) |
| 229 | btwnnz | |- ( ( m e. ZZ /\ m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) -> -. ( `' G ` k ) e. ZZ ) |
|
| 230 | 229 | 3expib | |- ( m e. ZZ -> ( ( m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) -> -. ( `' G ` k ) e. ZZ ) ) |
| 231 | 230 | con2d | |- ( m e. ZZ -> ( ( `' G ` k ) e. ZZ -> -. ( m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) ) ) |
| 232 | 224 228 231 | sylc | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> -. ( m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) ) |
| 233 | 5 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 234 | 156 | adantrr | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> m e. ( 1 ... ( # ` A ) ) ) |
| 235 | isorel | |- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( m e. ( 1 ... ( # ` A ) ) /\ ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) ) -> ( m < ( `' G ` k ) <-> ( G ` m ) < ( G ` ( `' G ` k ) ) ) ) |
|
| 236 | 233 234 227 235 | syl12anc | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( m < ( `' G ` k ) <-> ( G ` m ) < ( G ` ( `' G ` k ) ) ) ) |
| 237 | 38 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 238 | 237 226 114 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( G ` ( `' G ` k ) ) = k ) |
| 239 | 238 | breq2d | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( G ` m ) < ( G ` ( `' G ` k ) ) <-> ( G ` m ) < k ) ) |
| 240 | 174 | adantrr | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( G ` m ) e. ZZ ) |
| 241 | 7 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> A C_ ( ZZ>= ` M ) ) |
| 242 | 241 226 | sseldd | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> k e. ( ZZ>= ` M ) ) |
| 243 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 244 | 242 243 | syl | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> k e. ZZ ) |
| 245 | zltp1le | |- ( ( ( G ` m ) e. ZZ /\ k e. ZZ ) -> ( ( G ` m ) < k <-> ( ( G ` m ) + 1 ) <_ k ) ) |
|
| 246 | 240 244 245 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( G ` m ) < k <-> ( ( G ` m ) + 1 ) <_ k ) ) |
| 247 | 236 239 246 | 3bitrd | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( m < ( `' G ` k ) <-> ( ( G ` m ) + 1 ) <_ k ) ) |
| 248 | 169 | adantrr | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) |
| 249 | isorel | |- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( `' G ` k ) e. ( 1 ... ( # ` A ) ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) ) -> ( ( `' G ` k ) < ( m + 1 ) <-> ( G ` ( `' G ` k ) ) < ( G ` ( m + 1 ) ) ) ) |
|
| 250 | 233 227 248 249 | syl12anc | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( `' G ` k ) < ( m + 1 ) <-> ( G ` ( `' G ` k ) ) < ( G ` ( m + 1 ) ) ) ) |
| 251 | 238 | breq1d | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( G ` ( `' G ` k ) ) < ( G ` ( m + 1 ) ) <-> k < ( G ` ( m + 1 ) ) ) ) |
| 252 | 178 | adantrr | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( G ` ( m + 1 ) ) e. ZZ ) |
| 253 | zltlem1 | |- ( ( k e. ZZ /\ ( G ` ( m + 1 ) ) e. ZZ ) -> ( k < ( G ` ( m + 1 ) ) <-> k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
|
| 254 | 244 252 253 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( k < ( G ` ( m + 1 ) ) <-> k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 255 | 250 251 254 | 3bitrd | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( `' G ` k ) < ( m + 1 ) <-> k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 256 | 247 255 | anbi12d | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> ( ( m < ( `' G ` k ) /\ ( `' G ` k ) < ( m + 1 ) ) <-> ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) ) |
| 257 | 232 256 | mtbid | |- ( ( ( ph /\ m e. NN ) /\ ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) /\ k e. A ) ) -> -. ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 258 | 257 | expr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( k e. A -> -. ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) ) |
| 259 | 258 | con2d | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) -> -. k e. A ) ) |
| 260 | elfzle1 | |- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> ( ( G ` m ) + 1 ) <_ k ) |
|
| 261 | elfzle2 | |- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) |
|
| 262 | 260 261 | jca | |- ( k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) -> ( ( ( G ` m ) + 1 ) <_ k /\ k <_ ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 263 | 259 262 | impel | |- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> -. k e. A ) |
| 264 | 223 263 | eldifd | |- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) |
| 265 | 213 264 9 | syl2anc | |- ( ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) /\ k e. ( ( ( G ` m ) + 1 ) ... ( ( G ` ( m + 1 ) ) - 1 ) ) ) -> ( F ` k ) = Z ) |
| 266 | 160 164 186 212 265 | seqid2 | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq M ( .+ , F ) ` ( ( G ` ( m + 1 ) ) - 1 ) ) ) |
| 267 | 266 | oveq1d | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) = ( ( seq M ( .+ , F ) ` ( ( G ` ( m + 1 ) ) - 1 ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) ) |
| 268 | fveq2 | |- ( n = ( m + 1 ) -> ( H ` n ) = ( H ` ( m + 1 ) ) ) |
|
| 269 | 2fveq3 | |- ( n = ( m + 1 ) -> ( F ` ( G ` n ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) |
|
| 270 | 268 269 | eqeq12d | |- ( n = ( m + 1 ) -> ( ( H ` n ) = ( F ` ( G ` n ) ) <-> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) ) |
| 271 | 270 | imbi2d | |- ( n = ( m + 1 ) -> ( ( ph -> ( H ` n ) = ( F ` ( G ` n ) ) ) <-> ( ph -> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) ) ) |
| 272 | 271 136 | vtoclga | |- ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( ph -> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) ) |
| 273 | 272 | impcom | |- ( ( ph /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) |
| 274 | 273 | adantlr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( H ` ( m + 1 ) ) = ( F ` ( G ` ( m + 1 ) ) ) ) |
| 275 | 274 | oveq2d | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( H ` ( m + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) ) |
| 276 | 93 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> M e. ZZ ) |
| 277 | 178 | zcnd | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. CC ) |
| 278 | ax-1cn | |- 1 e. CC |
|
| 279 | npcan | |- ( ( ( G ` ( m + 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) + 1 ) = ( G ` ( m + 1 ) ) ) |
|
| 280 | 277 278 279 | sylancl | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) + 1 ) = ( G ` ( m + 1 ) ) ) |
| 281 | uztrn | |- ( ( ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` ( G ` m ) ) /\ ( G ` m ) e. ( ZZ>= ` M ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` M ) ) |
|
| 282 | 186 164 281 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` M ) ) |
| 283 | eluzp1p1 | |- ( ( ( G ` ( m + 1 ) ) - 1 ) e. ( ZZ>= ` M ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
|
| 284 | 282 283 | syl | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( ( G ` ( m + 1 ) ) - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 285 | 280 284 | eqeltrrd | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( G ` ( m + 1 ) ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 286 | seqm1 | |- ( ( M e. ZZ /\ ( G ` ( m + 1 ) ) e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( ( G ` ( m + 1 ) ) - 1 ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) ) |
|
| 287 | 276 285 286 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( ( G ` ( m + 1 ) ) - 1 ) ) .+ ( F ` ( G ` ( m + 1 ) ) ) ) ) |
| 288 | 267 275 287 | 3eqtr4rd | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( H ` ( m + 1 ) ) ) ) |
| 289 | seqp1 | |- ( m e. ( ZZ>= ` 1 ) -> ( seq 1 ( .+ , H ) ` ( m + 1 ) ) = ( ( seq 1 ( .+ , H ) ` m ) .+ ( H ` ( m + 1 ) ) ) ) |
|
| 290 | 148 289 | syl | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( seq 1 ( .+ , H ) ` ( m + 1 ) ) = ( ( seq 1 ( .+ , H ) ` m ) .+ ( H ` ( m + 1 ) ) ) ) |
| 291 | 288 290 | eqeq12d | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) <-> ( ( seq M ( .+ , F ) ` ( G ` m ) ) .+ ( H ` ( m + 1 ) ) ) = ( ( seq 1 ( .+ , H ) ` m ) .+ ( H ` ( m + 1 ) ) ) ) ) |
| 292 | 159 291 | imbitrrid | |- ( ( ( ph /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( # ` A ) ) ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) |
| 293 | 292 | ex | |- ( ( ph /\ m e. NN ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) |
| 294 | 293 | a2d | |- ( ( ph /\ m e. NN ) -> ( ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) |
| 295 | 158 294 | syld | |- ( ( ph /\ m e. NN ) -> ( ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) |
| 296 | 295 | expcom | |- ( m e. NN -> ( ph -> ( ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) ) |
| 297 | 296 | a2d | |- ( m e. NN -> ( ( ph -> ( m e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` m ) ) = ( seq 1 ( .+ , H ) ` m ) ) ) -> ( ph -> ( ( m + 1 ) e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` ( m + 1 ) ) ) = ( seq 1 ( .+ , H ) ` ( m + 1 ) ) ) ) ) ) |
| 298 | 18 24 30 36 145 297 | nnind | |- ( N e. NN -> ( ph -> ( N e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) ) |
| 299 | 12 298 | mpcom | |- ( ph -> ( N e. ( 1 ... ( # ` A ) ) -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) ) |
| 300 | 6 299 | mpd | |- ( ph -> ( seq M ( .+ , F ) ` ( G ` N ) ) = ( seq 1 ( .+ , H ) ` N ) ) |