This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer ordering relation. (Contributed by NM, 13-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zltlem1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 2 | zleltp1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑀 ≤ ( 𝑁 − 1 ) ↔ 𝑀 < ( ( 𝑁 − 1 ) + 1 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ ( 𝑁 − 1 ) ↔ 𝑀 < ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 4 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 5 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 6 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 7 | 4 5 6 | sylancl | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 9 | 8 | breq2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < ( ( 𝑁 − 1 ) + 1 ) ↔ 𝑀 < 𝑁 ) ) |
| 10 | 3 9 | bitr2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 1 ) ) ) |