This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uztrn | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 3 | eluzelz | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑀 ∈ ℤ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℤ ) |
| 5 | eluzle | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝐾 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ≤ 𝐾 ) |
| 7 | eluzle | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝐾 ≤ 𝑀 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐾 ≤ 𝑀 ) |
| 9 | eluzelz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝐾 ∈ ℤ ) | |
| 10 | zletr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 ≤ 𝐾 ∧ 𝐾 ≤ 𝑀 ) → 𝑁 ≤ 𝑀 ) ) | |
| 11 | 1 9 4 10 | syl2an23an | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑁 ≤ 𝐾 ∧ 𝐾 ≤ 𝑀 ) → 𝑁 ≤ 𝑀 ) ) |
| 12 | 6 8 11 | mp2and | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ≤ 𝑀 ) |
| 13 | eluz2 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀 ) ) | |
| 14 | 2 4 12 13 | syl3anbrc | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |