This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer ordering relation. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zltp1le | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1 | ⊢ ( ( 𝑁 − 𝑀 ) ∈ ℕ → 1 ≤ ( 𝑁 − 𝑀 ) ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 − 𝑀 ) ∈ ℕ → 1 ≤ ( 𝑁 − 𝑀 ) ) ) |
| 3 | znnsub | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) | |
| 4 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 5 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 6 | 1re | ⊢ 1 ∈ ℝ | |
| 7 | leaddsub2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑀 + 1 ) ≤ 𝑁 ↔ 1 ≤ ( 𝑁 − 𝑀 ) ) ) | |
| 8 | 6 7 | mp3an2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑀 + 1 ) ≤ 𝑁 ↔ 1 ≤ ( 𝑁 − 𝑀 ) ) ) |
| 9 | 4 5 8 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 + 1 ) ≤ 𝑁 ↔ 1 ≤ ( 𝑁 − 𝑀 ) ) ) |
| 10 | 2 3 9 | 3imtr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 → ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
| 11 | 4 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 12 | 11 | ltp1d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 < ( 𝑀 + 1 ) ) |
| 13 | peano2re | ⊢ ( 𝑀 ∈ ℝ → ( 𝑀 + 1 ) ∈ ℝ ) | |
| 14 | 11 13 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 1 ) ∈ ℝ ) |
| 15 | 5 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 16 | ltletr | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑀 + 1 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑀 < ( 𝑀 + 1 ) ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) → 𝑀 < 𝑁 ) ) | |
| 17 | 11 14 15 16 | syl3anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 < ( 𝑀 + 1 ) ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) → 𝑀 < 𝑁 ) ) |
| 18 | 12 17 | mpand | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 + 1 ) ≤ 𝑁 → 𝑀 < 𝑁 ) ) |
| 19 | 10 18 | impbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |