This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for .+ ) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqid2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 + 𝑍 ) = 𝑥 ) | |
| seqid2.2 | ⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqid2.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | ||
| seqid2.4 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ∈ 𝑆 ) | ||
| seqid2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) | ||
| Assertion | seqid2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqid2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 + 𝑍 ) = 𝑥 ) | |
| 2 | seqid2.2 | ⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | seqid2.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 4 | seqid2.4 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ∈ 𝑆 ) | |
| 5 | seqid2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) | |
| 6 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑁 ∈ ( 𝐾 ... 𝑁 ) ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐾 ... 𝑁 ) ) |
| 8 | eleq1 | ⊢ ( 𝑥 = 𝐾 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ 𝐾 ∈ ( 𝐾 ... 𝑁 ) ) ) | |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝐾 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) | |
| 10 | 9 | eqeq2d | ⊢ ( 𝑥 = 𝐾 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) ) |
| 11 | 8 10 | imbi12d | ⊢ ( 𝑥 = 𝐾 → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = 𝐾 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) ) ) ) |
| 13 | eleq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) ) | |
| 14 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) | |
| 15 | 14 | eqeq2d | ⊢ ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 16 | 13 15 | imbi12d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
| 18 | eleq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) | |
| 19 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 20 | 19 | eqeq2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 21 | 18 20 | imbi12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 22 | 21 | imbi2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 23 | eleq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝐾 ... 𝑁 ) ) ) | |
| 24 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) | |
| 25 | 24 | eqeq2d | ⊢ ( 𝑥 = 𝑁 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 26 | 23 25 | imbi12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 27 | 26 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
| 28 | eqidd | ⊢ ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) | |
| 29 | 28 | 2a1i | ⊢ ( 𝐾 ∈ ℤ → ( 𝜑 → ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) ) ) |
| 30 | peano2fzr | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) → 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) |
| 32 | 31 | expr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) ) |
| 33 | 32 | imim1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 34 | oveq1 | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 35 | fveqeq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑍 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) = 𝑍 ) ) | |
| 36 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ∀ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
| 38 | eluzp1p1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) | |
| 39 | 38 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
| 40 | elfzuz3 | ⊢ ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) | |
| 41 | 40 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 42 | elfzuzb | ⊢ ( ( 𝑛 + 1 ) ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ↔ ( ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) | |
| 43 | 39 41 42 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) |
| 44 | 35 37 43 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = 𝑍 ) |
| 45 | 44 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + 𝑍 ) ) |
| 46 | oveq1 | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) → ( 𝑥 + 𝑍 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + 𝑍 ) ) | |
| 47 | id | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) → 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) | |
| 48 | 46 47 | eqeq12d | ⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) → ( ( 𝑥 + 𝑍 ) = 𝑥 ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + 𝑍 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) ) |
| 49 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( 𝑥 + 𝑍 ) = 𝑥 ) |
| 50 | 48 49 4 | rspcdva | ⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + 𝑍 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + 𝑍 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) |
| 52 | 45 51 | eqtr2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 53 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 54 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 55 | uztrn | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 56 | 53 54 55 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 57 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 59 | 52 58 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 60 | 34 59 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 61 | 33 60 | animpimp2impd | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 62 | 12 17 22 27 29 61 | uzind4 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 63 | 3 62 | mpcom | ⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 64 | 7 63 | mpd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |