This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | btwnnz | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ∧ 𝐵 < ( 𝐴 + 1 ) ) → ¬ 𝐵 ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zltp1le | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 + 1 ) ≤ 𝐵 ) ) | |
| 2 | peano2z | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + 1 ) ∈ ℤ ) | |
| 3 | zre | ⊢ ( ( 𝐴 + 1 ) ∈ ℤ → ( 𝐴 + 1 ) ∈ ℝ ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + 1 ) ∈ ℝ ) |
| 5 | zre | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) | |
| 6 | lenlt | ⊢ ( ( ( 𝐴 + 1 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 1 ) ≤ 𝐵 ↔ ¬ 𝐵 < ( 𝐴 + 1 ) ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 1 ) ≤ 𝐵 ↔ ¬ 𝐵 < ( 𝐴 + 1 ) ) ) |
| 8 | 1 7 | bitrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 < ( 𝐴 + 1 ) ) ) |
| 9 | 8 | biimpd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < ( 𝐴 + 1 ) ) ) |
| 10 | 9 | impancom | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( 𝐵 ∈ ℤ → ¬ 𝐵 < ( 𝐴 + 1 ) ) ) |
| 11 | 10 | con2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( 𝐵 < ( 𝐴 + 1 ) → ¬ 𝐵 ∈ ℤ ) ) |
| 12 | 11 | 3impia | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ∧ 𝐵 < ( 𝐴 + 1 ) ) → ¬ 𝐵 ∈ ℤ ) |