This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for qustgp . (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qustgp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) | |
| qustgpopn.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| qustgpopn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| qustgpopn.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐻 ) | ||
| qustgpopn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) | ||
| qustgplem.m | ⊢ − = ( 𝑧 ∈ 𝑋 , 𝑤 ∈ 𝑋 ↦ [ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ] ( 𝐺 ~QG 𝑌 ) ) | ||
| Assertion | qustgplem | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐻 ∈ TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qustgp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) | |
| 2 | qustgpopn.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | qustgpopn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 4 | qustgpopn.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐻 ) | |
| 5 | qustgpopn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 6 | qustgplem.m | ⊢ − = ( 𝑧 ∈ 𝑋 , 𝑤 ∈ 𝑋 ↦ [ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ] ( 𝐺 ~QG 𝑌 ) ) | |
| 7 | 1 | qusgrp | ⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐻 ∈ Grp ) |
| 9 | 1 | a1i | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) ) |
| 10 | 2 | a1i | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝑋 = ( Base ‘ 𝐺 ) ) |
| 11 | ovex | ⊢ ( 𝐺 ~QG 𝑌 ) ∈ V | |
| 12 | 11 | a1i | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( 𝐺 ~QG 𝑌 ) ∈ V ) |
| 13 | simpl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐺 ∈ TopGrp ) | |
| 14 | 9 10 5 12 13 | qusval | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐻 = ( 𝐹 “s 𝐺 ) ) |
| 15 | 9 10 5 12 13 | quslem | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐹 : 𝑋 –onto→ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) |
| 16 | 14 10 15 13 3 4 | imastopn | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐾 = ( 𝐽 qTop 𝐹 ) ) |
| 17 | 3 2 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 19 | qtoptopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ) | |
| 20 | 18 15 19 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ) |
| 21 | 16 20 | eqeltrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐾 ∈ ( TopOn ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ) |
| 22 | 9 10 12 13 | qusbas | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) = ( Base ‘ 𝐻 ) ) |
| 23 | 22 | fveq2d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( TopOn ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) = ( TopOn ‘ ( Base ‘ 𝐻 ) ) ) |
| 24 | 21 23 | eleqtrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐻 ) ) ) |
| 25 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 26 | 25 4 | istps | ⊢ ( 𝐻 ∈ TopSp ↔ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐻 ) ) ) |
| 27 | 24 26 | sylibr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐻 ∈ TopSp ) |
| 28 | eqid | ⊢ ( -g ‘ 𝐻 ) = ( -g ‘ 𝐻 ) | |
| 29 | 25 28 | grpsubf | ⊢ ( 𝐻 ∈ Grp → ( -g ‘ 𝐻 ) : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ⟶ ( Base ‘ 𝐻 ) ) |
| 30 | 8 29 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( -g ‘ 𝐻 ) : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ⟶ ( Base ‘ 𝐻 ) ) |
| 31 | cnvimass | ⊢ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ⊆ dom ( -g ‘ 𝐻 ) | |
| 32 | 30 | fdmd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → dom ( -g ‘ 𝐻 ) = ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → dom ( -g ‘ 𝐻 ) = ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) |
| 34 | 31 33 | sseqtrid | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ⊆ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) |
| 35 | relxp | ⊢ Rel ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) | |
| 36 | relss | ⊢ ( ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ⊆ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) → ( Rel ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) → Rel ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) | |
| 37 | 34 35 36 | mpisyl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → Rel ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) |
| 38 | 34 | sseld | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) ) |
| 39 | vex | ⊢ 𝑥 ∈ V | |
| 40 | 39 | elqs | ⊢ ( 𝑥 ∈ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ↔ ∃ 𝑎 ∈ 𝑋 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ) |
| 41 | 22 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) = ( Base ‘ 𝐻 ) ) |
| 42 | 41 | eleq2d | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( 𝑥 ∈ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
| 43 | 40 42 | bitr3id | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( ∃ 𝑎 ∈ 𝑋 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
| 44 | vex | ⊢ 𝑦 ∈ V | |
| 45 | 44 | elqs | ⊢ ( 𝑦 ∈ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ↔ ∃ 𝑏 ∈ 𝑋 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) |
| 46 | 41 | eleq2d | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( 𝑦 ∈ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ↔ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) |
| 47 | 45 46 | bitr3id | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( ∃ 𝑏 ∈ 𝑋 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ↔ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) |
| 48 | 43 47 | anbi12d | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( ( ∃ 𝑎 ∈ 𝑋 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∧ ∃ 𝑏 ∈ 𝑋 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) ) |
| 49 | reeanv | ⊢ ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) ↔ ( ∃ 𝑎 ∈ 𝑋 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∧ ∃ 𝑏 ∈ 𝑋 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) ) | |
| 50 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) | |
| 51 | 48 49 50 | 3bitr4g | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) ) |
| 52 | 8 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝐻 ∈ Grp ) |
| 53 | 52 29 | syl | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( -g ‘ 𝐻 ) : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ⟶ ( Base ‘ 𝐻 ) ) |
| 54 | ffn | ⊢ ( ( -g ‘ 𝐻 ) : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ⟶ ( Base ‘ 𝐻 ) → ( -g ‘ 𝐻 ) Fn ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) | |
| 55 | elpreima | ⊢ ( ( -g ‘ 𝐻 ) Fn ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) → ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ∧ ( ( -g ‘ 𝐻 ) ‘ 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ) ∈ 𝑢 ) ) ) | |
| 56 | 53 54 55 | 3syl | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ∧ ( ( -g ‘ 𝐻 ) ‘ 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ) ∈ 𝑢 ) ) ) |
| 57 | df-ov | ⊢ ( [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ( -g ‘ 𝐻 ) [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) = ( ( -g ‘ 𝐻 ) ‘ 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ) | |
| 58 | simpllr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) | |
| 59 | simprl | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑋 ) | |
| 60 | simprr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑏 ∈ 𝑋 ) | |
| 61 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 62 | 1 2 61 28 | qussub | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ( -g ‘ 𝐻 ) [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) = [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 63 | 58 59 60 62 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ( -g ‘ 𝐻 ) [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) = [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 64 | 57 63 | eqtr3id | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( -g ‘ 𝐻 ) ‘ 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ) = [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 65 | 64 | eleq1d | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( -g ‘ 𝐻 ) ‘ 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ) ∈ 𝑢 ↔ [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ∈ 𝑢 ) ) |
| 66 | simpr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) | |
| 67 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 68 | 67 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐺 ∈ Grp ) |
| 69 | 2 61 | grpsubf | ⊢ ( 𝐺 ∈ Grp → ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 70 | ffn | ⊢ ( ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 → ( -g ‘ 𝐺 ) Fn ( 𝑋 × 𝑋 ) ) | |
| 71 | 68 69 70 | 3syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( -g ‘ 𝐺 ) Fn ( 𝑋 × 𝑋 ) ) |
| 72 | fnov | ⊢ ( ( -g ‘ 𝐺 ) Fn ( 𝑋 × 𝑋 ) ↔ ( -g ‘ 𝐺 ) = ( 𝑧 ∈ 𝑋 , 𝑤 ∈ 𝑋 ↦ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ) ) | |
| 73 | 71 72 | sylib | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( -g ‘ 𝐺 ) = ( 𝑧 ∈ 𝑋 , 𝑤 ∈ 𝑋 ↦ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ) ) |
| 74 | 3 61 | tgpsubcn | ⊢ ( 𝐺 ∈ TopGrp → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 75 | 74 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 76 | 73 75 | eqeltrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( 𝑧 ∈ 𝑋 , 𝑤 ∈ 𝑋 ↦ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 77 | ecexg | ⊢ ( ( 𝐺 ~QG 𝑌 ) ∈ V → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ V ) | |
| 78 | 11 77 | ax-mp | ⊢ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ V |
| 79 | 78 5 | fnmpti | ⊢ 𝐹 Fn 𝑋 |
| 80 | qtopid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) | |
| 81 | 18 79 80 | sylancl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 82 | 16 | oveq2d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 83 | 81 82 | eleqtrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 84 | 5 83 | eqeltrrid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 85 | eceq1 | ⊢ ( 𝑥 = ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ] ( 𝐺 ~QG 𝑌 ) ) | |
| 86 | 18 18 76 18 84 85 | cnmpt21 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( 𝑧 ∈ 𝑋 , 𝑤 ∈ 𝑋 ↦ [ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ] ( 𝐺 ~QG 𝑌 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 87 | 6 86 | eqeltrid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 88 | 87 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 89 | simplr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑢 ∈ 𝐾 ) | |
| 90 | cnima | ⊢ ( ( − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ∧ 𝑢 ∈ 𝐾 ) → ( ◡ − “ 𝑢 ) ∈ ( 𝐽 ×t 𝐽 ) ) | |
| 91 | 88 89 90 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ◡ − “ 𝑢 ) ∈ ( 𝐽 ×t 𝐽 ) ) |
| 92 | 18 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 93 | eltx | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( ◡ − “ 𝑢 ) ∈ ( 𝐽 ×t 𝐽 ) ↔ ∀ 𝑡 ∈ ( ◡ − “ 𝑢 ) ∃ 𝑐 ∈ 𝐽 ∃ 𝑑 ∈ 𝐽 ( 𝑡 ∈ ( 𝑐 × 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) | |
| 94 | 92 92 93 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ◡ − “ 𝑢 ) ∈ ( 𝐽 ×t 𝐽 ) ↔ ∀ 𝑡 ∈ ( ◡ − “ 𝑢 ) ∃ 𝑐 ∈ 𝐽 ∃ 𝑑 ∈ 𝐽 ( 𝑡 ∈ ( 𝑐 × 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) |
| 95 | 91 94 | mpbid | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ∀ 𝑡 ∈ ( ◡ − “ 𝑢 ) ∃ 𝑐 ∈ 𝐽 ∃ 𝑑 ∈ 𝐽 ( 𝑡 ∈ ( 𝑐 × 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) |
| 96 | ecexg | ⊢ ( ( 𝐺 ~QG 𝑌 ) ∈ V → [ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ] ( 𝐺 ~QG 𝑌 ) ∈ V ) | |
| 97 | 11 96 | ax-mp | ⊢ [ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ] ( 𝐺 ~QG 𝑌 ) ∈ V |
| 98 | 6 97 | fnmpoi | ⊢ − Fn ( 𝑋 × 𝑋 ) |
| 99 | elpreima | ⊢ ( − Fn ( 𝑋 × 𝑋 ) → ( 〈 𝑎 , 𝑏 〉 ∈ ( ◡ − “ 𝑢 ) ↔ ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( − ‘ 〈 𝑎 , 𝑏 〉 ) ∈ 𝑢 ) ) ) | |
| 100 | 98 99 | ax-mp | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( ◡ − “ 𝑢 ) ↔ ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( − ‘ 〈 𝑎 , 𝑏 〉 ) ∈ 𝑢 ) ) |
| 101 | opelxp | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ↔ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) | |
| 102 | 101 | anbi1i | ⊢ ( ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( − ‘ 〈 𝑎 , 𝑏 〉 ) ∈ 𝑢 ) ↔ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ ( − ‘ 〈 𝑎 , 𝑏 〉 ) ∈ 𝑢 ) ) |
| 103 | df-ov | ⊢ ( 𝑎 − 𝑏 ) = ( − ‘ 〈 𝑎 , 𝑏 〉 ) | |
| 104 | oveq12 | ⊢ ( ( 𝑧 = 𝑎 ∧ 𝑤 = 𝑏 ) → ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) = ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ) | |
| 105 | 104 | eceq1d | ⊢ ( ( 𝑧 = 𝑎 ∧ 𝑤 = 𝑏 ) → [ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ] ( 𝐺 ~QG 𝑌 ) = [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 106 | ecexg | ⊢ ( ( 𝐺 ~QG 𝑌 ) ∈ V → [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ∈ V ) | |
| 107 | 11 106 | ax-mp | ⊢ [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ∈ V |
| 108 | 105 6 107 | ovmpoa | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑎 − 𝑏 ) = [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 109 | 103 108 | eqtr3id | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( − ‘ 〈 𝑎 , 𝑏 〉 ) = [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 110 | 109 | eleq1d | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( ( − ‘ 〈 𝑎 , 𝑏 〉 ) ∈ 𝑢 ↔ [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ∈ 𝑢 ) ) |
| 111 | 110 | pm5.32i | ⊢ ( ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ ( − ‘ 〈 𝑎 , 𝑏 〉 ) ∈ 𝑢 ) ↔ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ∈ 𝑢 ) ) |
| 112 | 100 102 111 | 3bitri | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( ◡ − “ 𝑢 ) ↔ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ∈ 𝑢 ) ) |
| 113 | eleq1 | ⊢ ( 𝑡 = 〈 𝑎 , 𝑏 〉 → ( 𝑡 ∈ ( 𝑐 × 𝑑 ) ↔ 〈 𝑎 , 𝑏 〉 ∈ ( 𝑐 × 𝑑 ) ) ) | |
| 114 | opelxp | ⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( 𝑐 × 𝑑 ) ↔ ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ) | |
| 115 | 113 114 | bitrdi | ⊢ ( 𝑡 = 〈 𝑎 , 𝑏 〉 → ( 𝑡 ∈ ( 𝑐 × 𝑑 ) ↔ ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ) ) |
| 116 | 115 | anbi1d | ⊢ ( 𝑡 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑡 ∈ ( 𝑐 × 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ↔ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) |
| 117 | 116 | 2rexbidv | ⊢ ( 𝑡 = 〈 𝑎 , 𝑏 〉 → ( ∃ 𝑐 ∈ 𝐽 ∃ 𝑑 ∈ 𝐽 ( 𝑡 ∈ ( 𝑐 × 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ↔ ∃ 𝑐 ∈ 𝐽 ∃ 𝑑 ∈ 𝐽 ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) |
| 118 | 117 | rspccv | ⊢ ( ∀ 𝑡 ∈ ( ◡ − “ 𝑢 ) ∃ 𝑐 ∈ 𝐽 ∃ 𝑑 ∈ 𝐽 ( 𝑡 ∈ ( 𝑐 × 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) → ( 〈 𝑎 , 𝑏 〉 ∈ ( ◡ − “ 𝑢 ) → ∃ 𝑐 ∈ 𝐽 ∃ 𝑑 ∈ 𝐽 ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) |
| 119 | 112 118 | biimtrrid | ⊢ ( ∀ 𝑡 ∈ ( ◡ − “ 𝑢 ) ∃ 𝑐 ∈ 𝐽 ∃ 𝑑 ∈ 𝐽 ( 𝑡 ∈ ( 𝑐 × 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) → ( ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ∈ 𝑢 ) → ∃ 𝑐 ∈ 𝐽 ∃ 𝑑 ∈ 𝐽 ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) |
| 120 | 95 119 | syl | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ∈ 𝑢 ) → ∃ 𝑐 ∈ 𝐽 ∃ 𝑑 ∈ 𝐽 ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) |
| 121 | 66 120 | mpand | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ∈ 𝑢 → ∃ 𝑐 ∈ 𝐽 ∃ 𝑑 ∈ 𝐽 ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) |
| 122 | simp-4l | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → 𝐺 ∈ TopGrp ) | |
| 123 | 58 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 124 | simprll | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → 𝑐 ∈ 𝐽 ) | |
| 125 | 1 2 3 4 5 | qustgpopn | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑐 ∈ 𝐽 ) → ( 𝐹 “ 𝑐 ) ∈ 𝐾 ) |
| 126 | 122 123 124 125 | syl3anc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → ( 𝐹 “ 𝑐 ) ∈ 𝐾 ) |
| 127 | simprlr | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → 𝑑 ∈ 𝐽 ) | |
| 128 | 1 2 3 4 5 | qustgpopn | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑑 ∈ 𝐽 ) → ( 𝐹 “ 𝑑 ) ∈ 𝐾 ) |
| 129 | 122 123 127 128 | syl3anc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → ( 𝐹 “ 𝑑 ) ∈ 𝐾 ) |
| 130 | 59 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → 𝑎 ∈ 𝑋 ) |
| 131 | eceq1 | ⊢ ( 𝑥 = 𝑎 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 132 | 131 5 78 | fvmpt3i | ⊢ ( 𝑎 ∈ 𝑋 → ( 𝐹 ‘ 𝑎 ) = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ) |
| 133 | 130 132 | syl | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → ( 𝐹 ‘ 𝑎 ) = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ) |
| 134 | 122 17 | syl | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 135 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑐 ∈ 𝐽 ) → 𝑐 ⊆ 𝑋 ) | |
| 136 | 134 124 135 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → 𝑐 ⊆ 𝑋 ) |
| 137 | simprrl | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ) | |
| 138 | 137 | simpld | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → 𝑎 ∈ 𝑐 ) |
| 139 | fnfvima | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑐 ⊆ 𝑋 ∧ 𝑎 ∈ 𝑐 ) → ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑐 ) ) | |
| 140 | 79 136 138 139 | mp3an2i | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑐 ) ) |
| 141 | 133 140 | eqeltrrd | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹 “ 𝑐 ) ) |
| 142 | 60 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → 𝑏 ∈ 𝑋 ) |
| 143 | eceq1 | ⊢ ( 𝑥 = 𝑏 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 144 | 143 5 78 | fvmpt3i | ⊢ ( 𝑏 ∈ 𝑋 → ( 𝐹 ‘ 𝑏 ) = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) |
| 145 | 142 144 | syl | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → ( 𝐹 ‘ 𝑏 ) = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) |
| 146 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑑 ∈ 𝐽 ) → 𝑑 ⊆ 𝑋 ) | |
| 147 | 134 127 146 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → 𝑑 ⊆ 𝑋 ) |
| 148 | 137 | simprd | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → 𝑏 ∈ 𝑑 ) |
| 149 | fnfvima | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑑 ⊆ 𝑋 ∧ 𝑏 ∈ 𝑑 ) → ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑑 ) ) | |
| 150 | 79 147 148 149 | mp3an2i | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑑 ) ) |
| 151 | 145 150 | eqeltrrd | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹 “ 𝑑 ) ) |
| 152 | 141 151 | opelxpd | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( 𝐹 “ 𝑐 ) × ( 𝐹 “ 𝑑 ) ) ) |
| 153 | 136 | sselda | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ 𝑝 ∈ 𝑐 ) → 𝑝 ∈ 𝑋 ) |
| 154 | 147 | sselda | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ 𝑞 ∈ 𝑑 ) → 𝑞 ∈ 𝑋 ) |
| 155 | 153 154 | anim12dan | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) |
| 156 | eceq1 | ⊢ ( 𝑥 = 𝑝 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 157 | 156 5 78 | fvmpt3i | ⊢ ( 𝑝 ∈ 𝑋 → ( 𝐹 ‘ 𝑝 ) = [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) ) |
| 158 | eceq1 | ⊢ ( 𝑥 = 𝑞 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 159 | 158 5 78 | fvmpt3i | ⊢ ( 𝑞 ∈ 𝑋 → ( 𝐹 ‘ 𝑞 ) = [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) ) |
| 160 | opeq12 | ⊢ ( ( ( 𝐹 ‘ 𝑝 ) = [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) ∧ ( 𝐹 ‘ 𝑞 ) = [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) ) → 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 = 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ) | |
| 161 | 157 159 160 | syl2an | ⊢ ( ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) → 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 = 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ) |
| 162 | 155 161 | syl | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 = 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ) |
| 163 | 123 | adantr | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 164 | 1 2 25 | quseccl | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑝 ∈ 𝑋 ) → [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) ∈ ( Base ‘ 𝐻 ) ) |
| 165 | 1 2 25 | quseccl | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑞 ∈ 𝑋 ) → [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) ∈ ( Base ‘ 𝐻 ) ) |
| 166 | 164 165 | anim12dan | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) → ( [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) ∈ ( Base ‘ 𝐻 ) ∧ [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) ∈ ( Base ‘ 𝐻 ) ) ) |
| 167 | 163 155 166 | syl2anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → ( [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) ∈ ( Base ‘ 𝐻 ) ∧ [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) ∈ ( Base ‘ 𝐻 ) ) ) |
| 168 | opelxpi | ⊢ ( ( [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) ∈ ( Base ‘ 𝐻 ) ∧ [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) ∈ ( Base ‘ 𝐻 ) ) → 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) | |
| 169 | 167 168 | syl | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) |
| 170 | 1 2 61 28 | qussub | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) → ( [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) ( -g ‘ 𝐻 ) [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) ) = [ ( 𝑝 ( -g ‘ 𝐺 ) 𝑞 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 171 | 170 | 3expb | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) ) → ( [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) ( -g ‘ 𝐻 ) [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) ) = [ ( 𝑝 ( -g ‘ 𝐺 ) 𝑞 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 172 | 163 155 171 | syl2anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → ( [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) ( -g ‘ 𝐻 ) [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) ) = [ ( 𝑝 ( -g ‘ 𝐺 ) 𝑞 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 173 | oveq12 | ⊢ ( ( 𝑧 = 𝑝 ∧ 𝑤 = 𝑞 ) → ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) = ( 𝑝 ( -g ‘ 𝐺 ) 𝑞 ) ) | |
| 174 | 173 | eceq1d | ⊢ ( ( 𝑧 = 𝑝 ∧ 𝑤 = 𝑞 ) → [ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ] ( 𝐺 ~QG 𝑌 ) = [ ( 𝑝 ( -g ‘ 𝐺 ) 𝑞 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 175 | ecexg | ⊢ ( ( 𝐺 ~QG 𝑌 ) ∈ V → [ ( 𝑝 ( -g ‘ 𝐺 ) 𝑞 ) ] ( 𝐺 ~QG 𝑌 ) ∈ V ) | |
| 176 | 11 175 | ax-mp | ⊢ [ ( 𝑝 ( -g ‘ 𝐺 ) 𝑞 ) ] ( 𝐺 ~QG 𝑌 ) ∈ V |
| 177 | 174 6 176 | ovmpoa | ⊢ ( ( 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ) → ( 𝑝 − 𝑞 ) = [ ( 𝑝 ( -g ‘ 𝐺 ) 𝑞 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 178 | 155 177 | syl | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → ( 𝑝 − 𝑞 ) = [ ( 𝑝 ( -g ‘ 𝐺 ) 𝑞 ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 179 | 172 178 | eqtr4d | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → ( [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) ( -g ‘ 𝐻 ) [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) ) = ( 𝑝 − 𝑞 ) ) |
| 180 | df-ov | ⊢ ( [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) ( -g ‘ 𝐻 ) [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) ) = ( ( -g ‘ 𝐻 ) ‘ 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ) | |
| 181 | df-ov | ⊢ ( 𝑝 − 𝑞 ) = ( − ‘ 〈 𝑝 , 𝑞 〉 ) | |
| 182 | 179 180 181 | 3eqtr3g | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → ( ( -g ‘ 𝐻 ) ‘ 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ) = ( − ‘ 〈 𝑝 , 𝑞 〉 ) ) |
| 183 | opelxpi | ⊢ ( ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) → 〈 𝑝 , 𝑞 〉 ∈ ( 𝑐 × 𝑑 ) ) | |
| 184 | simprrr | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) | |
| 185 | 184 | sselda | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ 〈 𝑝 , 𝑞 〉 ∈ ( 𝑐 × 𝑑 ) ) → 〈 𝑝 , 𝑞 〉 ∈ ( ◡ − “ 𝑢 ) ) |
| 186 | 183 185 | sylan2 | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → 〈 𝑝 , 𝑞 〉 ∈ ( ◡ − “ 𝑢 ) ) |
| 187 | elpreima | ⊢ ( − Fn ( 𝑋 × 𝑋 ) → ( 〈 𝑝 , 𝑞 〉 ∈ ( ◡ − “ 𝑢 ) ↔ ( 〈 𝑝 , 𝑞 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( − ‘ 〈 𝑝 , 𝑞 〉 ) ∈ 𝑢 ) ) ) | |
| 188 | 98 187 | ax-mp | ⊢ ( 〈 𝑝 , 𝑞 〉 ∈ ( ◡ − “ 𝑢 ) ↔ ( 〈 𝑝 , 𝑞 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( − ‘ 〈 𝑝 , 𝑞 〉 ) ∈ 𝑢 ) ) |
| 189 | 188 | simprbi | ⊢ ( 〈 𝑝 , 𝑞 〉 ∈ ( ◡ − “ 𝑢 ) → ( − ‘ 〈 𝑝 , 𝑞 〉 ) ∈ 𝑢 ) |
| 190 | 186 189 | syl | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → ( − ‘ 〈 𝑝 , 𝑞 〉 ) ∈ 𝑢 ) |
| 191 | 182 190 | eqeltrd | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → ( ( -g ‘ 𝐻 ) ‘ 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ) ∈ 𝑢 ) |
| 192 | 53 54 | syl | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( -g ‘ 𝐻 ) Fn ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) |
| 193 | 192 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → ( -g ‘ 𝐻 ) Fn ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) |
| 194 | elpreima | ⊢ ( ( -g ‘ 𝐻 ) Fn ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) → ( 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ( 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ∧ ( ( -g ‘ 𝐻 ) ‘ 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ) ∈ 𝑢 ) ) ) | |
| 195 | 193 194 | syl | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → ( 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ( 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ∧ ( ( -g ‘ 𝐻 ) ‘ 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ) ∈ 𝑢 ) ) ) |
| 196 | 169 191 195 | mpbir2and | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → 〈 [ 𝑝 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑞 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) |
| 197 | 162 196 | eqeltrd | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) ∧ ( 𝑝 ∈ 𝑐 ∧ 𝑞 ∈ 𝑑 ) ) → 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) |
| 198 | 197 | ralrimivva | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → ∀ 𝑝 ∈ 𝑐 ∀ 𝑞 ∈ 𝑑 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) |
| 199 | opeq1 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑝 ) → 〈 𝑧 , 𝑤 〉 = 〈 ( 𝐹 ‘ 𝑝 ) , 𝑤 〉 ) | |
| 200 | 199 | eleq1d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑝 ) → ( 〈 𝑧 , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ 〈 ( 𝐹 ‘ 𝑝 ) , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 201 | 200 | ralbidv | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑝 ) → ( ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 𝑧 , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 ( 𝐹 ‘ 𝑝 ) , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 202 | 201 | ralima | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑐 ⊆ 𝑋 ) → ( ∀ 𝑧 ∈ ( 𝐹 “ 𝑐 ) ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 𝑧 , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ∀ 𝑝 ∈ 𝑐 ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 ( 𝐹 ‘ 𝑝 ) , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 203 | 79 202 | mpan | ⊢ ( 𝑐 ⊆ 𝑋 → ( ∀ 𝑧 ∈ ( 𝐹 “ 𝑐 ) ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 𝑧 , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ∀ 𝑝 ∈ 𝑐 ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 ( 𝐹 ‘ 𝑝 ) , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 204 | opeq2 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑞 ) → 〈 ( 𝐹 ‘ 𝑝 ) , 𝑤 〉 = 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ) | |
| 205 | 204 | eleq1d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑞 ) → ( 〈 ( 𝐹 ‘ 𝑝 ) , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 206 | 205 | ralima | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑑 ⊆ 𝑋 ) → ( ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 ( 𝐹 ‘ 𝑝 ) , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ∀ 𝑞 ∈ 𝑑 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 207 | 79 206 | mpan | ⊢ ( 𝑑 ⊆ 𝑋 → ( ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 ( 𝐹 ‘ 𝑝 ) , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ∀ 𝑞 ∈ 𝑑 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 208 | 207 | ralbidv | ⊢ ( 𝑑 ⊆ 𝑋 → ( ∀ 𝑝 ∈ 𝑐 ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 ( 𝐹 ‘ 𝑝 ) , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ∀ 𝑝 ∈ 𝑐 ∀ 𝑞 ∈ 𝑑 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 209 | 203 208 | sylan9bb | ⊢ ( ( 𝑐 ⊆ 𝑋 ∧ 𝑑 ⊆ 𝑋 ) → ( ∀ 𝑧 ∈ ( 𝐹 “ 𝑐 ) ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 𝑧 , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ∀ 𝑝 ∈ 𝑐 ∀ 𝑞 ∈ 𝑑 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 210 | 136 147 209 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → ( ∀ 𝑧 ∈ ( 𝐹 “ 𝑐 ) ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 𝑧 , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ∀ 𝑝 ∈ 𝑐 ∀ 𝑞 ∈ 𝑑 〈 ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑞 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 211 | 198 210 | mpbird | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → ∀ 𝑧 ∈ ( 𝐹 “ 𝑐 ) ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 𝑧 , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) |
| 212 | dfss3 | ⊢ ( ( ( 𝐹 “ 𝑐 ) × ( 𝐹 “ 𝑑 ) ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ∀ 𝑦 ∈ ( ( 𝐹 “ 𝑐 ) × ( 𝐹 “ 𝑑 ) ) 𝑦 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) | |
| 213 | eleq1 | ⊢ ( 𝑦 = 〈 𝑧 , 𝑤 〉 → ( 𝑦 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ 〈 𝑧 , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) | |
| 214 | 213 | ralxp | ⊢ ( ∀ 𝑦 ∈ ( ( 𝐹 “ 𝑐 ) × ( 𝐹 “ 𝑑 ) ) 𝑦 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ∀ 𝑧 ∈ ( 𝐹 “ 𝑐 ) ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 𝑧 , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) |
| 215 | 212 214 | bitri | ⊢ ( ( ( 𝐹 “ 𝑐 ) × ( 𝐹 “ 𝑑 ) ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ∀ 𝑧 ∈ ( 𝐹 “ 𝑐 ) ∀ 𝑤 ∈ ( 𝐹 “ 𝑑 ) 〈 𝑧 , 𝑤 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) |
| 216 | 211 215 | sylibr | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → ( ( 𝐹 “ 𝑐 ) × ( 𝐹 “ 𝑑 ) ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) |
| 217 | xpeq1 | ⊢ ( 𝑟 = ( 𝐹 “ 𝑐 ) → ( 𝑟 × 𝑠 ) = ( ( 𝐹 “ 𝑐 ) × 𝑠 ) ) | |
| 218 | 217 | eleq2d | ⊢ ( 𝑟 = ( 𝐹 “ 𝑐 ) → ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ↔ 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( 𝐹 “ 𝑐 ) × 𝑠 ) ) ) |
| 219 | 217 | sseq1d | ⊢ ( 𝑟 = ( 𝐹 “ 𝑐 ) → ( ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ( ( 𝐹 “ 𝑐 ) × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 220 | 218 219 | anbi12d | ⊢ ( 𝑟 = ( 𝐹 “ 𝑐 ) → ( ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ↔ ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( 𝐹 “ 𝑐 ) × 𝑠 ) ∧ ( ( 𝐹 “ 𝑐 ) × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) |
| 221 | xpeq2 | ⊢ ( 𝑠 = ( 𝐹 “ 𝑑 ) → ( ( 𝐹 “ 𝑐 ) × 𝑠 ) = ( ( 𝐹 “ 𝑐 ) × ( 𝐹 “ 𝑑 ) ) ) | |
| 222 | 221 | eleq2d | ⊢ ( 𝑠 = ( 𝐹 “ 𝑑 ) → ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( 𝐹 “ 𝑐 ) × 𝑠 ) ↔ 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( 𝐹 “ 𝑐 ) × ( 𝐹 “ 𝑑 ) ) ) ) |
| 223 | 221 | sseq1d | ⊢ ( 𝑠 = ( 𝐹 “ 𝑑 ) → ( ( ( 𝐹 “ 𝑐 ) × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ ( ( 𝐹 “ 𝑐 ) × ( 𝐹 “ 𝑑 ) ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 224 | 222 223 | anbi12d | ⊢ ( 𝑠 = ( 𝐹 “ 𝑑 ) → ( ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( 𝐹 “ 𝑐 ) × 𝑠 ) ∧ ( ( 𝐹 “ 𝑐 ) × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ↔ ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( 𝐹 “ 𝑐 ) × ( 𝐹 “ 𝑑 ) ) ∧ ( ( 𝐹 “ 𝑐 ) × ( 𝐹 “ 𝑑 ) ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) |
| 225 | 220 224 | rspc2ev | ⊢ ( ( ( 𝐹 “ 𝑐 ) ∈ 𝐾 ∧ ( 𝐹 “ 𝑑 ) ∈ 𝐾 ∧ ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( 𝐹 “ 𝑐 ) × ( 𝐹 “ 𝑑 ) ) ∧ ( ( 𝐹 “ 𝑐 ) × ( 𝐹 “ 𝑑 ) ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) → ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 226 | 126 129 152 216 225 | syl112anc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ∧ ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) ) ) → ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 227 | 226 | expr | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝑐 ∈ 𝐽 ∧ 𝑑 ∈ 𝐽 ) ) → ( ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) → ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) |
| 228 | 227 | rexlimdvva | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ∃ 𝑐 ∈ 𝐽 ∃ 𝑑 ∈ 𝐽 ( ( 𝑎 ∈ 𝑐 ∧ 𝑏 ∈ 𝑑 ) ∧ ( 𝑐 × 𝑑 ) ⊆ ( ◡ − “ 𝑢 ) ) → ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) |
| 229 | 121 228 | syld | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( [ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ] ( 𝐺 ~QG 𝑌 ) ∈ 𝑢 → ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) |
| 230 | 65 229 | sylbid | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( -g ‘ 𝐻 ) ‘ 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ) ∈ 𝑢 → ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) |
| 231 | 230 | adantld | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ∧ ( ( -g ‘ 𝐻 ) ‘ 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ) ∈ 𝑢 ) → ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) |
| 232 | 56 231 | sylbid | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) → ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) |
| 233 | opeq12 | ⊢ ( ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) → 〈 𝑥 , 𝑦 〉 = 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ) | |
| 234 | 233 | eleq1d | ⊢ ( ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ↔ 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 235 | 233 | eleq1d | ⊢ ( ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) } ↔ 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) } ) ) |
| 236 | opex | ⊢ 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ V | |
| 237 | eleq1 | ⊢ ( 𝑤 = 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 → ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ↔ 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ) ) | |
| 238 | 237 | anbi1d | ⊢ ( 𝑤 = 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 → ( ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ↔ ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) |
| 239 | 238 | 2rexbidv | ⊢ ( 𝑤 = 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 → ( ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ↔ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) |
| 240 | 236 239 | elab | ⊢ ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) } ↔ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 241 | 235 240 | bitrdi | ⊢ ( ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) } ↔ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) |
| 242 | 234 241 | imbi12d | ⊢ ( ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) → 〈 𝑥 , 𝑦 〉 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) } ) ↔ ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) → ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 〈 [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) , [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) ) |
| 243 | 232 242 | syl5ibrcom | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) → 〈 𝑥 , 𝑦 〉 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) } ) ) ) |
| 244 | 243 | rexlimdvva | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝑥 = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∧ 𝑦 = [ 𝑏 ] ( 𝐺 ~QG 𝑌 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) → 〈 𝑥 , 𝑦 〉 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) } ) ) ) |
| 245 | 51 244 | sylbird | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) → 〈 𝑥 , 𝑦 〉 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) } ) ) ) |
| 246 | 245 | com23 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) → 〈 𝑥 , 𝑦 〉 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) } ) ) ) |
| 247 | 38 246 | mpdd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) → 〈 𝑥 , 𝑦 〉 ∈ { 𝑤 ∣ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) } ) ) |
| 248 | 37 247 | relssdv | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ⊆ { 𝑤 ∣ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) } ) |
| 249 | ssabral | ⊢ ( ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ⊆ { 𝑤 ∣ ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) } ↔ ∀ 𝑤 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) | |
| 250 | 248 249 | sylib | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ∀ 𝑤 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) |
| 251 | eltx | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐻 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐻 ) ) ) → ( ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ∈ ( 𝐾 ×t 𝐾 ) ↔ ∀ 𝑤 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) | |
| 252 | 24 24 251 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ∈ ( 𝐾 ×t 𝐾 ) ↔ ∀ 𝑤 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) |
| 253 | 252 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ∈ ( 𝐾 ×t 𝐾 ) ↔ ∀ 𝑤 ∈ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ∃ 𝑟 ∈ 𝐾 ∃ 𝑠 ∈ 𝐾 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ) ) ) |
| 254 | 250 253 | mpbird | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) ∧ 𝑢 ∈ 𝐾 ) → ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ∈ ( 𝐾 ×t 𝐾 ) ) |
| 255 | 254 | ralrimiva | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ∀ 𝑢 ∈ 𝐾 ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ∈ ( 𝐾 ×t 𝐾 ) ) |
| 256 | txtopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐻 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐻 ) ) ) → ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) ) | |
| 257 | 24 24 256 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) ) |
| 258 | iscn | ⊢ ( ( ( 𝐾 ×t 𝐾 ) ∈ ( TopOn ‘ ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ) ∧ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐻 ) ) ) → ( ( -g ‘ 𝐻 ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ↔ ( ( -g ‘ 𝐻 ) : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ⟶ ( Base ‘ 𝐻 ) ∧ ∀ 𝑢 ∈ 𝐾 ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ∈ ( 𝐾 ×t 𝐾 ) ) ) ) | |
| 259 | 257 24 258 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( ( -g ‘ 𝐻 ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ↔ ( ( -g ‘ 𝐻 ) : ( ( Base ‘ 𝐻 ) × ( Base ‘ 𝐻 ) ) ⟶ ( Base ‘ 𝐻 ) ∧ ∀ 𝑢 ∈ 𝐾 ( ◡ ( -g ‘ 𝐻 ) “ 𝑢 ) ∈ ( 𝐾 ×t 𝐾 ) ) ) ) |
| 260 | 30 255 259 | mpbir2and | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → ( -g ‘ 𝐻 ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 261 | 4 28 | istgp2 | ⊢ ( 𝐻 ∈ TopGrp ↔ ( 𝐻 ∈ Grp ∧ 𝐻 ∈ TopSp ∧ ( -g ‘ 𝐻 ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) ) |
| 262 | 8 27 260 261 | syl3anbrc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐻 ∈ TopGrp ) |