This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qtopid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 Fn 𝑋 ) | |
| 2 | dffn4 | ⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) | |
| 3 | 1 2 | sylib | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
| 4 | fof | ⊢ ( 𝐹 : 𝑋 –onto→ ran 𝐹 → 𝐹 : 𝑋 ⟶ ran 𝐹 ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 : 𝑋 ⟶ ran 𝐹 ) |
| 6 | elqtop3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) | |
| 7 | 3 6 | syldan | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 8 | 7 | simplbda | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) ∧ 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 9 | 8 | ralrimiva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → ∀ 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
| 10 | qtoptopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) | |
| 11 | 3 10 | syldan | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 12 | iscn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) → ( 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐹 : 𝑋 ⟶ ran 𝐹 ∧ ∀ 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) | |
| 13 | 11 12 | syldan | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → ( 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝐹 : 𝑋 ⟶ ran 𝐹 ∧ ∀ 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 14 | 5 9 13 | mpbir2and | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |