This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If Y is a normal subgroup of G , then H = G / Y is a group, called the quotient of G by Y . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qusgrp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) | |
| Assertion | qusgrp | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) | |
| 2 | 1 | a1i | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) ) |
| 3 | eqidd | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 4 | eqidd | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) | |
| 5 | nsgsubg | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( 𝐺 ~QG 𝑆 ) = ( 𝐺 ~QG 𝑆 ) | |
| 8 | 6 7 | eqger | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑆 ) Er ( Base ‘ 𝐺 ) ) |
| 9 | 5 8 | syl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑆 ) Er ( Base ‘ 𝐺 ) ) |
| 10 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 11 | 5 10 | syl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 12 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 13 | 6 7 12 | eqgcpbl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( 𝑎 ( 𝐺 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝐺 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( 𝐺 ~QG 𝑆 ) ( 𝑐 ( +g ‘ 𝐺 ) 𝑑 ) ) ) |
| 14 | 6 12 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ) |
| 15 | 11 14 | syl3an1 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ) |
| 16 | 9 | adantr | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝐺 ~QG 𝑆 ) Er ( Base ‘ 𝐺 ) ) |
| 17 | 11 | adantr | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → 𝐺 ∈ Grp ) |
| 18 | simpr1 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑢 ∈ ( Base ‘ 𝐺 ) ) | |
| 19 | simpr2 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑣 ∈ ( Base ‘ 𝐺 ) ) | |
| 20 | 17 18 19 14 | syl3anc | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ) |
| 21 | simpr3 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑤 ∈ ( Base ‘ 𝐺 ) ) | |
| 22 | 6 12 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) ∈ ( Base ‘ 𝐺 ) ) |
| 23 | 17 20 21 22 | syl3anc | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) ∈ ( Base ‘ 𝐺 ) ) |
| 24 | 16 23 | erref | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) ( 𝐺 ~QG 𝑆 ) ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) ) |
| 25 | 6 12 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝐺 ) ( 𝑣 ( +g ‘ 𝐺 ) 𝑤 ) ) ) |
| 26 | 11 25 | sylan | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) = ( 𝑢 ( +g ‘ 𝐺 ) ( 𝑣 ( +g ‘ 𝐺 ) 𝑤 ) ) ) |
| 27 | 24 26 | breqtrd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ∧ 𝑤 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g ‘ 𝐺 ) 𝑣 ) ( +g ‘ 𝐺 ) 𝑤 ) ( 𝐺 ~QG 𝑆 ) ( 𝑢 ( +g ‘ 𝐺 ) ( 𝑣 ( +g ‘ 𝐺 ) 𝑤 ) ) ) |
| 28 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 29 | 6 28 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 30 | 11 29 | syl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 31 | 6 12 28 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑢 ) = 𝑢 ) |
| 32 | 11 31 | sylan | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑢 ) = 𝑢 ) |
| 33 | 9 | adantr | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 ~QG 𝑆 ) Er ( Base ‘ 𝐺 ) ) |
| 34 | simpr | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → 𝑢 ∈ ( Base ‘ 𝐺 ) ) | |
| 35 | 33 34 | erref | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → 𝑢 ( 𝐺 ~QG 𝑆 ) 𝑢 ) |
| 36 | 32 35 | eqbrtrd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑢 ) ( 𝐺 ~QG 𝑆 ) 𝑢 ) |
| 37 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 38 | 6 37 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ( Base ‘ 𝐺 ) ) |
| 39 | 11 38 | sylan | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ( Base ‘ 𝐺 ) ) |
| 40 | 6 12 28 37 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑢 ) ( +g ‘ 𝐺 ) 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
| 41 | 11 40 | sylan | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑢 ) ( +g ‘ 𝐺 ) 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
| 42 | 30 | adantr | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 43 | 33 42 | erref | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( 0g ‘ 𝐺 ) ( 𝐺 ~QG 𝑆 ) ( 0g ‘ 𝐺 ) ) |
| 44 | 41 43 | eqbrtrd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑢 ) ( +g ‘ 𝐺 ) 𝑢 ) ( 𝐺 ~QG 𝑆 ) ( 0g ‘ 𝐺 ) ) |
| 45 | 2 3 4 9 11 13 15 27 30 36 39 44 | qusgrp2 | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 𝐻 ∈ Grp ∧ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑆 ) = ( 0g ‘ 𝐻 ) ) ) |
| 46 | 45 | simpld | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |