This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubcl.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | grpsubf | ⊢ ( 𝐺 ∈ Grp → − : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubcl.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 4 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) |
| 6 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 7 | 1 6 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 8 | 5 7 | syld3an3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 9 | 8 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 10 | 9 | ralrimivva | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 11 | 1 6 3 2 | grpsubfval | ⊢ − = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 12 | 11 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ 𝐵 ↔ − : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 13 | 10 12 | sylib | ⊢ ( 𝐺 ∈ Grp → − : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |