This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qustgp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) | |
| qustgpopn.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| qustgpopn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| qustgpopn.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐻 ) | ||
| qustgpopn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) | ||
| Assertion | qustgpopn | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( 𝐹 “ 𝑆 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qustgp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) | |
| 2 | qustgpopn.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | qustgpopn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 4 | qustgpopn.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐻 ) | |
| 5 | qustgpopn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 6 | imassrn | ⊢ ( 𝐹 “ 𝑆 ) ⊆ ran 𝐹 | |
| 7 | 1 | a1i | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) ) |
| 8 | 2 | a1i | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝑋 = ( Base ‘ 𝐺 ) ) |
| 9 | ovex | ⊢ ( 𝐺 ~QG 𝑌 ) ∈ V | |
| 10 | 9 | a1i | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( 𝐺 ~QG 𝑌 ) ∈ V ) |
| 11 | simp1 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝐺 ∈ TopGrp ) | |
| 12 | 7 8 5 10 11 | quslem | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝐹 : 𝑋 –onto→ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) |
| 13 | forn | ⊢ ( 𝐹 : 𝑋 –onto→ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) → ran 𝐹 = ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ran 𝐹 = ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) |
| 15 | 6 14 | sseqtrid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( 𝐹 “ 𝑆 ) ⊆ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) |
| 16 | eceq1 | ⊢ ( 𝑥 = 𝑦 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 17 | 16 | cbvmptv | ⊢ ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) = ( 𝑦 ∈ 𝑋 ↦ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ) |
| 18 | 5 17 | eqtri | ⊢ 𝐹 = ( 𝑦 ∈ 𝑋 ↦ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ) |
| 19 | 18 | mptpreima | ⊢ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) = { 𝑦 ∈ 𝑋 ∣ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹 “ 𝑆 ) } |
| 20 | 19 | reqabi | ⊢ ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ↔ ( 𝑦 ∈ 𝑋 ∧ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹 “ 𝑆 ) ) ) |
| 21 | 5 | funmpt2 | ⊢ Fun 𝐹 |
| 22 | fvelima | ⊢ ( ( Fun 𝐹 ∧ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹 “ 𝑆 ) ) → ∃ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 23 | 21 22 | mpan | ⊢ ( [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹 “ 𝑆 ) → ∃ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ) |
| 24 | 3 2 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 25 | 11 24 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 26 | simp3 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝑆 ∈ 𝐽 ) | |
| 27 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐽 ) → 𝑆 ⊆ 𝑋 ) | |
| 28 | 25 26 27 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝑆 ⊆ 𝑋 ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
| 30 | 29 | sselda | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑋 ) |
| 31 | eceq1 | ⊢ ( 𝑥 = 𝑧 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 32 | ecexg | ⊢ ( ( 𝐺 ~QG 𝑌 ) ∈ V → [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ∈ V ) | |
| 33 | 9 32 | ax-mp | ⊢ [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ∈ V |
| 34 | 31 5 33 | fvmpt | ⊢ ( 𝑧 ∈ 𝑋 → ( 𝐹 ‘ 𝑧 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) |
| 35 | 30 34 | syl | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑧 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) |
| 36 | 35 | eqeq1d | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ↔ [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ) ) |
| 37 | eqcom | ⊢ ( [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ↔ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 38 | 36 37 | bitrdi | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ↔ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) ) |
| 39 | nsgsubg | ⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 40 | 39 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 41 | 40 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 42 | eqid | ⊢ ( 𝐺 ~QG 𝑌 ) = ( 𝐺 ~QG 𝑌 ) | |
| 43 | 2 42 | eqger | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑌 ) Er 𝑋 ) |
| 44 | 41 43 | syl | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ~QG 𝑌 ) Er 𝑋 ) |
| 45 | simplr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ 𝑋 ) | |
| 46 | 44 45 | erth | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( 𝐺 ~QG 𝑌 ) 𝑧 ↔ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) ) |
| 47 | 11 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → 𝐺 ∈ TopGrp ) |
| 48 | 2 | subgss | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
| 49 | 41 48 | syl | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑌 ⊆ 𝑋 ) |
| 50 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 51 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 52 | 2 50 51 42 | eqgval | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑦 ( 𝐺 ~QG 𝑌 ) 𝑧 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
| 53 | 47 49 52 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( 𝐺 ~QG 𝑌 ) 𝑧 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
| 54 | 38 46 53 | 3bitr2d | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) ) |
| 55 | eqid | ⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) | |
| 56 | eqid | ⊢ ( +g ‘ ( oppg ‘ 𝐺 ) ) = ( +g ‘ ( oppg ‘ 𝐺 ) ) | |
| 57 | 51 55 56 | oppgplus | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑎 ) = ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 58 | 57 | mpteq2i | ⊢ ( 𝑎 ∈ 𝑋 ↦ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑎 ) ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 59 | 47 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝐺 ∈ TopGrp ) |
| 60 | 55 | oppgtgp | ⊢ ( 𝐺 ∈ TopGrp → ( oppg ‘ 𝐺 ) ∈ TopGrp ) |
| 61 | 59 60 | syl | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( oppg ‘ 𝐺 ) ∈ TopGrp ) |
| 62 | 49 | sselda | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 63 | eqid | ⊢ ( 𝑎 ∈ 𝑋 ↦ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑎 ) ) = ( 𝑎 ∈ 𝑋 ↦ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑎 ) ) | |
| 64 | 55 2 | oppgbas | ⊢ 𝑋 = ( Base ‘ ( oppg ‘ 𝐺 ) ) |
| 65 | 55 3 | oppgtopn | ⊢ 𝐽 = ( TopOpen ‘ ( oppg ‘ 𝐺 ) ) |
| 66 | 63 64 56 65 | tgplacthmeo | ⊢ ( ( ( oppg ‘ 𝐺 ) ∈ TopGrp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) → ( 𝑎 ∈ 𝑋 ↦ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑎 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 67 | 61 62 66 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( 𝑎 ∈ 𝑋 ↦ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑎 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 68 | 58 67 | eqeltrrid | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 69 | hmeocn | ⊢ ( ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ∈ ( 𝐽 Homeo 𝐽 ) → ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) | |
| 70 | 68 69 | syl | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 71 | 26 | ad3antrrr | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝑆 ∈ 𝐽 ) |
| 72 | cnima | ⊢ ( ( ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑆 ∈ 𝐽 ) → ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ∈ 𝐽 ) | |
| 73 | 70 71 72 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ∈ 𝐽 ) |
| 74 | 45 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) |
| 75 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 76 | 59 75 | syl | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝐺 ∈ Grp ) |
| 77 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 78 | 2 51 77 50 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
| 79 | 76 74 78 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
| 80 | 79 | oveq1d | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 81 | 2 50 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
| 82 | 76 74 81 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
| 83 | 30 | adantr | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝑧 ∈ 𝑋 ) |
| 84 | 2 51 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 85 | 76 74 82 83 84 | syl13anc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 86 | 2 51 77 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) = 𝑧 ) |
| 87 | 76 83 86 | syl2anc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑧 ) = 𝑧 ) |
| 88 | 80 85 87 | 3eqtr3d | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 𝑧 ) |
| 89 | simplr | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝑧 ∈ 𝑆 ) | |
| 90 | 88 89 | eqeltrd | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑆 ) |
| 91 | oveq1 | ⊢ ( 𝑎 = 𝑦 → ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) | |
| 92 | 91 | eleq1d | ⊢ ( 𝑎 = 𝑦 → ( ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑆 ↔ ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑆 ) ) |
| 93 | eqid | ⊢ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) | |
| 94 | 93 | mptpreima | ⊢ ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) = { 𝑎 ∈ 𝑋 ∣ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑆 } |
| 95 | 92 94 | elrab2 | ⊢ ( 𝑦 ∈ ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ↔ ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑆 ) ) |
| 96 | 74 90 95 | sylanbrc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝑦 ∈ ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ) |
| 97 | ecexg | ⊢ ( ( 𝐺 ~QG 𝑌 ) ∈ V → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ V ) | |
| 98 | 9 97 | ax-mp | ⊢ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ V |
| 99 | 98 5 | fnmpti | ⊢ 𝐹 Fn 𝑋 |
| 100 | 29 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
| 101 | fnfvima | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑆 ⊆ 𝑋 ∧ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑆 ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ∈ ( 𝐹 “ 𝑆 ) ) | |
| 102 | 101 | 3expia | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑆 → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ∈ ( 𝐹 “ 𝑆 ) ) ) |
| 103 | 99 100 102 | sylancr | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑆 → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ∈ ( 𝐹 “ 𝑆 ) ) ) |
| 104 | 76 | adantr | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 105 | simpr | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑎 ∈ 𝑋 ) | |
| 106 | 62 | adantr | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 107 | 2 51 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) → ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑋 ) |
| 108 | 104 105 106 107 | syl3anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑋 ) |
| 109 | eceq1 | ⊢ ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ] ( 𝐺 ~QG 𝑌 ) ) | |
| 110 | 109 5 98 | fvmpt3i | ⊢ ( ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑋 → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) = [ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 111 | 108 110 | syl | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) = [ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 112 | 44 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝐺 ~QG 𝑌 ) Er 𝑋 ) |
| 113 | 2 51 77 50 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) 𝑎 ) = ( 0g ‘ 𝐺 ) ) |
| 114 | 104 105 113 | syl2anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) 𝑎 ) = ( 0g ‘ 𝐺 ) ) |
| 115 | 114 | oveq1d | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 116 | 2 50 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑋 ) |
| 117 | 104 105 116 | syl2anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑋 ) |
| 118 | 2 51 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
| 119 | 104 117 105 106 118 | syl13anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
| 120 | 2 51 77 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 121 | 104 106 120 | syl2anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 122 | 115 119 121 | 3eqtr3d | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 123 | simplr | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) | |
| 124 | 122 123 | eqeltrd | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ∈ 𝑌 ) |
| 125 | 49 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑌 ⊆ 𝑋 ) |
| 126 | 2 50 51 42 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑎 ( 𝐺 ~QG 𝑌 ) ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ↔ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ∈ 𝑌 ) ) ) |
| 127 | 104 125 126 | syl2anc | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑎 ( 𝐺 ~QG 𝑌 ) ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ↔ ( 𝑎 ∈ 𝑋 ∧ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ∈ 𝑌 ) ) ) |
| 128 | 105 108 124 127 | mpbir3and | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → 𝑎 ( 𝐺 ~QG 𝑌 ) ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 129 | 112 128 | erthi | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) = [ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ] ( 𝐺 ~QG 𝑌 ) ) |
| 130 | 111 129 | eqtr4d | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ) |
| 131 | 130 | eleq1d | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) ∈ ( 𝐹 “ 𝑆 ) ↔ [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹 “ 𝑆 ) ) ) |
| 132 | 103 131 | sylibd | ⊢ ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑆 → [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹 “ 𝑆 ) ) ) |
| 133 | 132 | ss2rabdv | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → { 𝑎 ∈ 𝑋 ∣ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ 𝑆 } ⊆ { 𝑎 ∈ 𝑋 ∣ [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹 “ 𝑆 ) } ) |
| 134 | eceq1 | ⊢ ( 𝑥 = 𝑎 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 135 | 134 | cbvmptv | ⊢ ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) = ( 𝑎 ∈ 𝑋 ↦ [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ) |
| 136 | 5 135 | eqtri | ⊢ 𝐹 = ( 𝑎 ∈ 𝑋 ↦ [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ) |
| 137 | 136 | mptpreima | ⊢ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) = { 𝑎 ∈ 𝑋 ∣ [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹 “ 𝑆 ) } |
| 138 | 133 94 137 | 3sstr4g | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) |
| 139 | eleq2 | ⊢ ( 𝑢 = ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) → ( 𝑦 ∈ 𝑢 ↔ 𝑦 ∈ ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ) ) | |
| 140 | sseq1 | ⊢ ( 𝑢 = ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) → ( 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ↔ ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) | |
| 141 | 139 140 | anbi12d | ⊢ ( 𝑢 = ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) → ( ( 𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ↔ ( 𝑦 ∈ ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ∧ ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) ) |
| 142 | 141 | rspcev | ⊢ ( ( ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ∈ 𝐽 ∧ ( 𝑦 ∈ ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ∧ ( ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝑎 ( +g ‘ 𝐺 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) |
| 143 | 73 96 138 142 | syl12anc | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ∃ 𝑢 ∈ 𝐽 ( 𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) |
| 144 | 143 | 3ad2antr3 | ⊢ ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) |
| 145 | 144 | ex | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑌 ) → ∃ 𝑢 ∈ 𝐽 ( 𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) ) |
| 146 | 54 145 | sylbid | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) → ∃ 𝑢 ∈ 𝐽 ( 𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) ) |
| 147 | 146 | rexlimdva | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) → ∃ 𝑢 ∈ 𝐽 ( 𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) ) |
| 148 | 23 147 | syl5 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝑋 ) → ( [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹 “ 𝑆 ) → ∃ 𝑢 ∈ 𝐽 ( 𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) ) |
| 149 | 148 | expimpd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( ( 𝑦 ∈ 𝑋 ∧ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹 “ 𝑆 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) ) |
| 150 | 20 149 | biimtrid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) ) |
| 151 | 150 | ralrimiv | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ∀ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ∃ 𝑢 ∈ 𝐽 ( 𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) |
| 152 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 153 | eltop2 | ⊢ ( 𝐽 ∈ Top → ( ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ∈ 𝐽 ↔ ∀ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ∃ 𝑢 ∈ 𝐽 ( 𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) ) | |
| 154 | 25 152 153 | 3syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ∈ 𝐽 ↔ ∀ 𝑦 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ∃ 𝑢 ∈ 𝐽 ( 𝑦 ∈ 𝑢 ∧ 𝑢 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) ) |
| 155 | 151 154 | mpbird | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ∈ 𝐽 ) |
| 156 | elqtop3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) → ( ( 𝐹 “ 𝑆 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑆 ) ⊆ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ∈ 𝐽 ) ) ) | |
| 157 | 25 12 156 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑆 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑆 ) ⊆ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ∈ 𝐽 ) ) ) |
| 158 | 15 155 157 | mpbir2and | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( 𝐹 “ 𝑆 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
| 159 | 7 8 5 10 11 | qusval | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝐻 = ( 𝐹 “s 𝐺 ) ) |
| 160 | 159 8 12 11 3 4 | imastopn | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → 𝐾 = ( 𝐽 qTop 𝐹 ) ) |
| 161 | 158 160 | eleqtrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆 ∈ 𝐽 ) → ( 𝐹 “ 𝑆 ) ∈ 𝐾 ) |