This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istps.a | ⊢ 𝐴 = ( Base ‘ 𝐾 ) | |
| istps.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) | ||
| Assertion | istps | ⊢ ( 𝐾 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istps.a | ⊢ 𝐴 = ( Base ‘ 𝐾 ) | |
| 2 | istps.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐾 ) | |
| 3 | df-topsp | ⊢ TopSp = { 𝑓 ∣ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) } | |
| 4 | 3 | eleq2i | ⊢ ( 𝐾 ∈ TopSp ↔ 𝐾 ∈ { 𝑓 ∣ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) } ) |
| 5 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐽 ∈ Top ) | |
| 6 | 0ntop | ⊢ ¬ ∅ ∈ Top | |
| 7 | fvprc | ⊢ ( ¬ 𝐾 ∈ V → ( TopOpen ‘ 𝐾 ) = ∅ ) | |
| 8 | 2 7 | eqtrid | ⊢ ( ¬ 𝐾 ∈ V → 𝐽 = ∅ ) |
| 9 | 8 | eleq1d | ⊢ ( ¬ 𝐾 ∈ V → ( 𝐽 ∈ Top ↔ ∅ ∈ Top ) ) |
| 10 | 6 9 | mtbiri | ⊢ ( ¬ 𝐾 ∈ V → ¬ 𝐽 ∈ Top ) |
| 11 | 10 | con4i | ⊢ ( 𝐽 ∈ Top → 𝐾 ∈ V ) |
| 12 | 5 11 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐾 ∈ V ) |
| 13 | fveq2 | ⊢ ( 𝑓 = 𝐾 → ( TopOpen ‘ 𝑓 ) = ( TopOpen ‘ 𝐾 ) ) | |
| 14 | 13 2 | eqtr4di | ⊢ ( 𝑓 = 𝐾 → ( TopOpen ‘ 𝑓 ) = 𝐽 ) |
| 15 | fveq2 | ⊢ ( 𝑓 = 𝐾 → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐾 ) ) | |
| 16 | 15 1 | eqtr4di | ⊢ ( 𝑓 = 𝐾 → ( Base ‘ 𝑓 ) = 𝐴 ) |
| 17 | 16 | fveq2d | ⊢ ( 𝑓 = 𝐾 → ( TopOn ‘ ( Base ‘ 𝑓 ) ) = ( TopOn ‘ 𝐴 ) ) |
| 18 | 14 17 | eleq12d | ⊢ ( 𝑓 = 𝐾 → ( ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) ↔ 𝐽 ∈ ( TopOn ‘ 𝐴 ) ) ) |
| 19 | 12 18 | elab3 | ⊢ ( 𝐾 ∈ { 𝑓 ∣ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) } ↔ 𝐽 ∈ ( TopOn ‘ 𝐴 ) ) |
| 20 | 4 19 | bitri | ⊢ ( 𝐾 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝐴 ) ) |