This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imastps.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imastps.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imastps.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imastopn.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | ||
| imastopn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | ||
| imastopn.o | ⊢ 𝑂 = ( TopOpen ‘ 𝑈 ) | ||
| Assertion | imastopn | ⊢ ( 𝜑 → 𝑂 = ( 𝐽 qTop 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imastps.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imastps.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imastps.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 4 | imastopn.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | |
| 5 | imastopn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | |
| 6 | imastopn.o | ⊢ 𝑂 = ( TopOpen ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( TopSet ‘ 𝑈 ) = ( TopSet ‘ 𝑈 ) | |
| 8 | 1 2 3 4 5 7 | imastset | ⊢ ( 𝜑 → ( TopSet ‘ 𝑈 ) = ( 𝐽 qTop 𝐹 ) ) |
| 9 | 5 | fvexi | ⊢ 𝐽 ∈ V |
| 10 | fofn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 Fn 𝑉 ) | |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
| 12 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 13 | 2 12 | eqeltrdi | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 14 | fnex | ⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑉 ∈ V ) → 𝐹 ∈ V ) | |
| 15 | 11 13 14 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 16 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 17 | 16 | qtopval | ⊢ ( ( 𝐽 ∈ V ∧ 𝐹 ∈ V ) → ( 𝐽 qTop 𝐹 ) = { 𝑥 ∈ 𝒫 ( 𝐹 “ ∪ 𝐽 ) ∣ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ∪ 𝐽 ) ∈ 𝐽 } ) |
| 18 | 9 15 17 | sylancr | ⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) = { 𝑥 ∈ 𝒫 ( 𝐹 “ ∪ 𝐽 ) ∣ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ∪ 𝐽 ) ∈ 𝐽 } ) |
| 19 | 8 18 | eqtrd | ⊢ ( 𝜑 → ( TopSet ‘ 𝑈 ) = { 𝑥 ∈ 𝒫 ( 𝐹 “ ∪ 𝐽 ) ∣ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ∪ 𝐽 ) ∈ 𝐽 } ) |
| 20 | ssrab2 | ⊢ { 𝑥 ∈ 𝒫 ( 𝐹 “ ∪ 𝐽 ) ∣ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ∪ 𝐽 ) ∈ 𝐽 } ⊆ 𝒫 ( 𝐹 “ ∪ 𝐽 ) | |
| 21 | imassrn | ⊢ ( 𝐹 “ ∪ 𝐽 ) ⊆ ran 𝐹 | |
| 22 | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 23 | 3 22 | syl | ⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 24 | 1 2 3 4 | imasbas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 25 | 23 24 | eqtrd | ⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝑈 ) ) |
| 26 | 21 25 | sseqtrid | ⊢ ( 𝜑 → ( 𝐹 “ ∪ 𝐽 ) ⊆ ( Base ‘ 𝑈 ) ) |
| 27 | 26 | sspwd | ⊢ ( 𝜑 → 𝒫 ( 𝐹 “ ∪ 𝐽 ) ⊆ 𝒫 ( Base ‘ 𝑈 ) ) |
| 28 | 20 27 | sstrid | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 ( 𝐹 “ ∪ 𝐽 ) ∣ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ∪ 𝐽 ) ∈ 𝐽 } ⊆ 𝒫 ( Base ‘ 𝑈 ) ) |
| 29 | 19 28 | eqsstrd | ⊢ ( 𝜑 → ( TopSet ‘ 𝑈 ) ⊆ 𝒫 ( Base ‘ 𝑈 ) ) |
| 30 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 31 | 30 7 | topnid | ⊢ ( ( TopSet ‘ 𝑈 ) ⊆ 𝒫 ( Base ‘ 𝑈 ) → ( TopSet ‘ 𝑈 ) = ( TopOpen ‘ 𝑈 ) ) |
| 32 | 29 31 | syl | ⊢ ( 𝜑 → ( TopSet ‘ 𝑈 ) = ( TopOpen ‘ 𝑈 ) ) |
| 33 | 32 6 | eqtr4di | ⊢ ( 𝜑 → ( TopSet ‘ 𝑈 ) = 𝑂 ) |
| 34 | 33 8 | eqtr3d | ⊢ ( 𝜑 → 𝑂 = ( 𝐽 qTop 𝐹 ) ) |