This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | anim12dan.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| anim12dan.2 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | anim12dan | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( 𝜒 ∧ 𝜏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12dan.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| 2 | anim12dan.2 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) | |
| 3 | 1 | ex | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
| 4 | 2 | ex | ⊢ ( 𝜑 → ( 𝜃 → 𝜏 ) ) |
| 5 | 3 4 | anim12d | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ) → ( 𝜒 ∧ 𝜏 ) ) ) |
| 6 | 5 | imp | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜃 ) ) → ( 𝜒 ∧ 𝜏 ) ) |