This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qustgp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) | |
| Assertion | qustgp | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐻 ∈ TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qustgp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( TopOpen ‘ 𝐻 ) = ( TopOpen ‘ 𝐻 ) | |
| 5 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) | |
| 6 | eqid | ⊢ ( 𝑧 ∈ ( Base ‘ 𝐺 ) , 𝑤 ∈ ( Base ‘ 𝐺 ) ↦ [ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ] ( 𝐺 ~QG 𝑌 ) ) = ( 𝑧 ∈ ( Base ‘ 𝐺 ) , 𝑤 ∈ ( Base ‘ 𝐺 ) ↦ [ ( 𝑧 ( -g ‘ 𝐺 ) 𝑤 ) ] ( 𝐺 ~QG 𝑌 ) ) | |
| 7 | 1 2 3 4 5 6 | qustgplem | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐻 ∈ TopGrp ) |