This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusval.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| qusval.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| qusval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) | ||
| qusval.e | ⊢ ( 𝜑 → ∼ ∈ 𝑊 ) | ||
| qusval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| Assertion | qusval | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusval.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| 2 | qusval.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | qusval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) | |
| 4 | qusval.e | ⊢ ( 𝜑 → ∼ ∈ 𝑊 ) | |
| 5 | qusval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 6 | df-qus | ⊢ /s = ( 𝑟 ∈ V , 𝑒 ∈ V ↦ ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) “s 𝑟 ) ) | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → /s = ( 𝑟 ∈ V , 𝑒 ∈ V ↦ ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) “s 𝑟 ) ) ) |
| 8 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → 𝑟 = 𝑅 ) | |
| 9 | 8 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 11 | 9 10 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → ( Base ‘ 𝑟 ) = 𝑉 ) |
| 12 | eceq2 | ⊢ ( 𝑒 = ∼ → [ 𝑥 ] 𝑒 = [ 𝑥 ] ∼ ) | |
| 13 | 12 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → [ 𝑥 ] 𝑒 = [ 𝑥 ] ∼ ) |
| 14 | 11 13 | mpteq12dv | ⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) ) |
| 15 | 14 3 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) = 𝐹 ) |
| 16 | 15 8 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) “s 𝑟 ) = ( 𝐹 “s 𝑅 ) ) |
| 17 | 5 | elexd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 18 | 4 | elexd | ⊢ ( 𝜑 → ∼ ∈ V ) |
| 19 | ovexd | ⊢ ( 𝜑 → ( 𝐹 “s 𝑅 ) ∈ V ) | |
| 20 | 7 16 17 18 19 | ovmpod | ⊢ ( 𝜑 → ( 𝑅 /s ∼ ) = ( 𝐹 “s 𝑅 ) ) |
| 21 | 1 20 | eqtrd | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |