This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qtoptopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 2 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 3 | foeq2 | ⊢ ( 𝑋 = ∪ 𝐽 → ( 𝐹 : 𝑋 –onto→ 𝑌 ↔ 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐹 : 𝑋 –onto→ 𝑌 ↔ 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) ) |
| 5 | 4 | biimpa | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) |
| 6 | fofn | ⊢ ( 𝐹 : ∪ 𝐽 –onto→ 𝑌 → 𝐹 Fn ∪ 𝐽 ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝐹 Fn ∪ 𝐽 ) |
| 8 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 9 | 8 | qtoptop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 Fn ∪ 𝐽 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
| 10 | 1 7 9 | syl2an2r | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ Top ) |
| 11 | 8 | qtopuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 –onto→ 𝑌 ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 12 | 1 5 11 | syl2an2r | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) |
| 13 | istopon | ⊢ ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ↔ ( ( 𝐽 qTop 𝐹 ) ∈ Top ∧ 𝑌 = ∪ ( 𝐽 qTop 𝐹 ) ) ) | |
| 14 | 10 12 13 | sylanbrc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |