This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function in qusval is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusval.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| qusval.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| qusval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) | ||
| qusval.e | ⊢ ( 𝜑 → ∼ ∈ 𝑊 ) | ||
| qusval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| Assertion | quslem | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ ( 𝑉 / ∼ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusval.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| 2 | qusval.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | qusval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) | |
| 4 | qusval.e | ⊢ ( 𝜑 → ∼ ∈ 𝑊 ) | |
| 5 | qusval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 6 | ecexg | ⊢ ( ∼ ∈ 𝑊 → [ 𝑥 ] ∼ ∈ V ) | |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → [ 𝑥 ] ∼ ∈ V ) |
| 8 | 7 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 [ 𝑥 ] ∼ ∈ V ) |
| 9 | 3 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝑉 [ 𝑥 ] ∼ ∈ V → 𝐹 Fn 𝑉 ) |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
| 11 | dffn4 | ⊢ ( 𝐹 Fn 𝑉 ↔ 𝐹 : 𝑉 –onto→ ran 𝐹 ) | |
| 12 | 10 11 | sylib | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ ran 𝐹 ) |
| 13 | 3 | rnmpt | ⊢ ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑉 𝑦 = [ 𝑥 ] ∼ } |
| 14 | df-qs | ⊢ ( 𝑉 / ∼ ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑉 𝑦 = [ 𝑥 ] ∼ } | |
| 15 | 13 14 | eqtr4i | ⊢ ran 𝐹 = ( 𝑉 / ∼ ) |
| 16 | foeq3 | ⊢ ( ran 𝐹 = ( 𝑉 / ∼ ) → ( 𝐹 : 𝑉 –onto→ ran 𝐹 ↔ 𝐹 : 𝑉 –onto→ ( 𝑉 / ∼ ) ) ) | |
| 17 | 15 16 | ax-mp | ⊢ ( 𝐹 : 𝑉 –onto→ ran 𝐹 ↔ 𝐹 : 𝑉 –onto→ ( 𝑉 / ∼ ) ) |
| 18 | 12 17 | sylib | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ ( 𝑉 / ∼ ) ) |