This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015) (Revised by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txtopon | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop | ⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑅 ∈ Top ) | |
| 2 | topontop | ⊢ ( 𝑆 ∈ ( TopOn ‘ 𝑌 ) → 𝑆 ∈ Top ) | |
| 3 | txtop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 5 | eqid | ⊢ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) = ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) | |
| 6 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 7 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 8 | 5 6 7 | txuni2 | ⊢ ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) |
| 9 | toponuni | ⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝑅 ) | |
| 10 | toponuni | ⊢ ( 𝑆 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝑆 ) | |
| 11 | xpeq12 | ⊢ ( ( 𝑋 = ∪ 𝑅 ∧ 𝑌 = ∪ 𝑆 ) → ( 𝑋 × 𝑌 ) = ( ∪ 𝑅 × ∪ 𝑆 ) ) | |
| 12 | 9 10 11 | syl2an | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑋 × 𝑌 ) = ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 13 | 5 | txbasex | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ∈ V ) |
| 14 | unitg | ⊢ ( ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ∈ V → ∪ ( topGen ‘ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) = ∪ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ∪ ( topGen ‘ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) = ∪ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) |
| 16 | 8 12 15 | 3eqtr4a | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑋 × 𝑌 ) = ∪ ( topGen ‘ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
| 17 | 5 | txval | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑅 ×t 𝑆 ) = ( topGen ‘ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
| 18 | 17 | unieqd | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( topGen ‘ ran ( 𝑢 ∈ 𝑅 , 𝑣 ∈ 𝑆 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
| 19 | 16 18 | eqtr4d | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 20 | istopon | ⊢ ( ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ↔ ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) ) ) | |
| 21 | 4 19 20 | sylanbrc | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |