This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "the class F is a continuous function from topology J to topology K ". Definition of continuous function in Munkres p. 102. (Contributed by NM, 17-Oct-2006) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 Cn 𝐾 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ) ) |
| 3 | cnveq | ⊢ ( 𝑓 = 𝐹 → ◡ 𝑓 = ◡ 𝐹 ) | |
| 4 | 3 | imaeq1d | ⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 “ 𝑦 ) = ( ◡ 𝐹 “ 𝑦 ) ) |
| 5 | 4 | eleq1d | ⊢ ( 𝑓 = 𝐹 → ( ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 6 | 5 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 ↔ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 7 | 6 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ↔ ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 8 | toponmax | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 ∈ 𝐾 ) | |
| 9 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 10 | elmapg | ⊢ ( ( 𝑌 ∈ 𝐾 ∧ 𝑋 ∈ 𝐽 ) → ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) | |
| 11 | 8 9 10 | syl2anr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 12 | 11 | anbi1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 13 | 7 12 | bitrid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 14 | 2 13 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |