This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2ralbidv.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | 2rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | 1 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |
| 3 | 2 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |