This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group with a topology is a topological group iff the subtraction operation is continuous. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpsubcn.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| tgpsubcn.3 | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | istgp2 | ⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpsubcn.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | tgpsubcn.3 | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 4 | tgptps | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) | |
| 5 | 1 2 | tgpsubcn | ⊢ ( 𝐺 ∈ TopGrp → − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 6 | 3 4 5 | 3jca | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ) |
| 7 | simp1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → 𝐺 ∈ Grp ) | |
| 8 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → 𝐺 ∈ Mnd ) |
| 10 | simp2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → 𝐺 ∈ TopSp ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 12 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 13 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 14 | 7 | 3ad2ant1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝐺 ∈ Grp ) |
| 15 | simp2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) | |
| 16 | simp3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) | |
| 17 | 11 12 2 13 14 15 16 | grpsubinv | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 18 | 17 | mpoeq3dva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 19 | eqid | ⊢ ( +𝑓 ‘ 𝐺 ) = ( +𝑓 ‘ 𝐺 ) | |
| 20 | 11 12 19 | plusffval | ⊢ ( +𝑓 ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 21 | 18 20 | eqtr4di | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) = ( +𝑓 ‘ 𝐺 ) ) |
| 22 | 11 1 | istps | ⊢ ( 𝐺 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 23 | 10 22 | sylib | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 24 | 23 23 | cnmpt1st | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 25 | 23 23 | cnmpt2nd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 26 | 11 13 | grpinvf | ⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 28 | 27 | feqmptd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 29 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 30 | 11 2 13 29 | grpinvval2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( 0g ‘ 𝐺 ) − 𝑥 ) ) |
| 31 | 7 30 | sylan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( 0g ‘ 𝐺 ) − 𝑥 ) ) |
| 32 | 31 | mpteq2dva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 0g ‘ 𝐺 ) − 𝑥 ) ) ) |
| 33 | 28 32 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 0g ‘ 𝐺 ) − 𝑥 ) ) ) |
| 34 | 11 29 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 35 | 34 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 36 | 23 23 35 | cnmptc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 0g ‘ 𝐺 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 37 | 23 | cnmptid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 38 | simp3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) | |
| 39 | 23 36 37 38 | cnmpt12f | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 0g ‘ 𝐺 ) − 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 40 | 33 39 | eqeltrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( invg ‘ 𝐺 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 41 | 23 23 25 40 | cnmpt21f | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 42 | 23 23 24 41 38 | cnmpt22f | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) , 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 − ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 43 | 21 42 | eqeltrrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → ( +𝑓 ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 44 | 19 1 | istmd | ⊢ ( 𝐺 ∈ TopMnd ↔ ( 𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ ( +𝑓 ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ) |
| 45 | 9 10 43 44 | syl3anbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → 𝐺 ∈ TopMnd ) |
| 46 | 1 13 | istgp | ⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ ( invg ‘ 𝐺 ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 47 | 7 45 40 46 | syl3anbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) → 𝐺 ∈ TopGrp ) |
| 48 | 6 47 | impbii | ⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ) |