This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltx | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊 ) → ( 𝑆 ∈ ( 𝐽 ×t 𝐾 ) ↔ ∀ 𝑝 ∈ 𝑆 ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐾 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) | |
| 2 | 1 | txval | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊 ) → ( 𝐽 ×t 𝐾 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 3 | 2 | eleq2d | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊 ) → ( 𝑆 ∈ ( 𝐽 ×t 𝐾 ) ↔ 𝑆 ∈ ( topGen ‘ ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) ) ) ) |
| 4 | 1 | txbasex | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊 ) → ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) ∈ V ) |
| 5 | eltg2b | ⊢ ( ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) ∈ V → ( 𝑆 ∈ ( topGen ‘ ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑝 ∈ 𝑆 ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊 ) → ( 𝑆 ∈ ( topGen ‘ ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑝 ∈ 𝑆 ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆 ) ) ) |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | vex | ⊢ 𝑦 ∈ V | |
| 9 | 7 8 | xpex | ⊢ ( 𝑥 × 𝑦 ) ∈ V |
| 10 | 9 | rgen2w | ⊢ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐾 ( 𝑥 × 𝑦 ) ∈ V |
| 11 | eqid | ⊢ ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) | |
| 12 | eleq2 | ⊢ ( 𝑧 = ( 𝑥 × 𝑦 ) → ( 𝑝 ∈ 𝑧 ↔ 𝑝 ∈ ( 𝑥 × 𝑦 ) ) ) | |
| 13 | sseq1 | ⊢ ( 𝑧 = ( 𝑥 × 𝑦 ) → ( 𝑧 ⊆ 𝑆 ↔ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) ) | |
| 14 | 12 13 | anbi12d | ⊢ ( 𝑧 = ( 𝑥 × 𝑦 ) → ( ( 𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆 ) ↔ ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) ) ) |
| 15 | 11 14 | rexrnmpo | ⊢ ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐾 ( 𝑥 × 𝑦 ) ∈ V → ( ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆 ) ↔ ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐾 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) ) ) |
| 16 | 10 15 | ax-mp | ⊢ ( ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆 ) ↔ ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐾 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) ) |
| 17 | 16 | ralbii | ⊢ ( ∀ 𝑝 ∈ 𝑆 ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑆 ) ↔ ∀ 𝑝 ∈ 𝑆 ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐾 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) ) |
| 18 | 6 17 | bitrdi | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊 ) → ( 𝑆 ∈ ( topGen ‘ ran ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( 𝑥 × 𝑦 ) ) ) ↔ ∀ 𝑝 ∈ 𝑆 ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐾 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) ) ) |
| 19 | 3 18 | bitrd | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊 ) → ( 𝑆 ∈ ( 𝐽 ×t 𝐾 ) ↔ ∀ 𝑝 ∈ 𝑆 ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐾 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ 𝑆 ) ) ) |