This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt21.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmpt21.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmpt21.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | ||
| cnmpt21.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | ||
| cnmpt21.b | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝑀 ) ) | ||
| cnmpt21.c | ⊢ ( 𝑧 = 𝐴 → 𝐵 = 𝐶 ) | ||
| Assertion | cnmpt21 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmpt21.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmpt21.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | |
| 4 | cnmpt21.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | |
| 5 | cnmpt21.b | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝑀 ) ) | |
| 6 | cnmpt21.c | ⊢ ( 𝑧 = 𝐴 → 𝐵 = 𝐶 ) | |
| 7 | df-ov | ⊢ ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 8 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → 𝑥 ∈ 𝑋 ) | |
| 9 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → 𝑦 ∈ 𝑌 ) | |
| 10 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 11 | 1 2 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 12 | cnf2 | ⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) | |
| 13 | 11 4 3 12 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) |
| 14 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 15 | 14 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) |
| 16 | 13 15 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ) |
| 17 | rsp2 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑍 ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑍 ) ) |
| 19 | 18 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑍 ) |
| 20 | 14 | ovmpt4g | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝐴 ∈ 𝑍 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = 𝐴 ) |
| 21 | 8 9 19 20 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) 𝑦 ) = 𝐴 ) |
| 22 | 7 21 | eqtr3id | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) = 𝐴 ) |
| 23 | 22 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝐴 ) ) |
| 24 | eqid | ⊢ ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) | |
| 25 | 6 | eleq1d | ⊢ ( 𝑧 = 𝐴 → ( 𝐵 ∈ ∪ 𝑀 ↔ 𝐶 ∈ ∪ 𝑀 ) ) |
| 26 | cntop2 | ⊢ ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝑀 ) → 𝑀 ∈ Top ) | |
| 27 | 5 26 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Top ) |
| 28 | toptopon2 | ⊢ ( 𝑀 ∈ Top ↔ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) | |
| 29 | 27 28 | sylib | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ) |
| 30 | cnf2 | ⊢ ( ( 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ 𝑀 ∈ ( TopOn ‘ ∪ 𝑀 ) ∧ ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝑀 ) ) → ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ∪ 𝑀 ) | |
| 31 | 4 29 5 30 | syl3anc | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ∪ 𝑀 ) |
| 32 | 24 | fmpt | ⊢ ( ∀ 𝑧 ∈ 𝑍 𝐵 ∈ ∪ 𝑀 ↔ ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ∪ 𝑀 ) |
| 33 | 31 32 | sylibr | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑍 𝐵 ∈ ∪ 𝑀 ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ∀ 𝑧 ∈ 𝑍 𝐵 ∈ ∪ 𝑀 ) |
| 35 | 25 34 19 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → 𝐶 ∈ ∪ 𝑀 ) |
| 36 | 24 6 19 35 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝐴 ) = 𝐶 ) |
| 37 | 23 36 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = 𝐶 ) |
| 38 | opelxpi | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑌 ) ) | |
| 39 | fvco3 | ⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) ) | |
| 40 | 13 38 39 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) ) |
| 41 | df-ov | ⊢ ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) 𝑦 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 42 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) | |
| 43 | 42 | ovmpt4g | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝐶 ∈ ∪ 𝑀 ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) 𝑦 ) = 𝐶 ) |
| 44 | 8 9 35 43 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) 𝑦 ) = 𝐶 ) |
| 45 | 41 44 | eqtr3id | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) = 𝐶 ) |
| 46 | 37 40 45 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 47 | 46 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 48 | nfv | ⊢ Ⅎ 𝑢 ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 49 | nfcv | ⊢ Ⅎ 𝑥 𝑌 | |
| 50 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) | |
| 51 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 52 | 50 51 | nfco | ⊢ Ⅎ 𝑥 ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 53 | nfcv | ⊢ Ⅎ 𝑥 〈 𝑢 , 𝑣 〉 | |
| 54 | 52 53 | nffv | ⊢ Ⅎ 𝑥 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) |
| 55 | nfmpo1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) | |
| 56 | 55 53 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) |
| 57 | 54 56 | nfeq | ⊢ Ⅎ 𝑥 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) |
| 58 | 49 57 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) |
| 59 | nfv | ⊢ Ⅎ 𝑣 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 60 | nfcv | ⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) | |
| 61 | nfmpo2 | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 62 | 60 61 | nfco | ⊢ Ⅎ 𝑦 ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) |
| 63 | nfcv | ⊢ Ⅎ 𝑦 〈 𝑥 , 𝑣 〉 | |
| 64 | 62 63 | nffv | ⊢ Ⅎ 𝑦 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) |
| 65 | nfmpo2 | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) | |
| 66 | 65 63 | nffv | ⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) |
| 67 | 64 66 | nfeq | ⊢ Ⅎ 𝑦 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) |
| 68 | opeq2 | ⊢ ( 𝑦 = 𝑣 → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 𝑣 〉 ) | |
| 69 | 68 | fveq2d | ⊢ ( 𝑦 = 𝑣 → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) ) |
| 70 | 68 | fveq2d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) ) |
| 71 | 69 70 | eqeq12d | ⊢ ( 𝑦 = 𝑣 → ( ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ↔ ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) ) ) |
| 72 | 59 67 71 | cbvralw | ⊢ ( ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ↔ ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) ) |
| 73 | opeq1 | ⊢ ( 𝑥 = 𝑢 → 〈 𝑥 , 𝑣 〉 = 〈 𝑢 , 𝑣 〉 ) | |
| 74 | 73 | fveq2d | ⊢ ( 𝑥 = 𝑢 → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 75 | 73 | fveq2d | ⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 76 | 74 75 | eqeq12d | ⊢ ( 𝑥 = 𝑢 → ( ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) ↔ ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) ) |
| 77 | 76 | ralbidv | ⊢ ( 𝑥 = 𝑢 → ( ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑣 〉 ) ↔ ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) ) |
| 78 | 72 77 | bitrid | ⊢ ( 𝑥 = 𝑢 → ( ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ↔ ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) ) |
| 79 | 48 58 78 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑥 , 𝑦 〉 ) ↔ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 80 | 47 79 | sylib | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 81 | fveq2 | ⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) ) | |
| 82 | fveq2 | ⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) | |
| 83 | 81 82 | eqeq12d | ⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 𝑤 ) ↔ ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) ) |
| 84 | 83 | ralxp | ⊢ ( ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 𝑤 ) ↔ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 〈 𝑢 , 𝑣 〉 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 85 | 80 84 | sylibr | ⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 𝑤 ) ) |
| 86 | fco | ⊢ ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) : 𝑍 ⟶ ∪ 𝑀 ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) | |
| 87 | 31 13 86 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) |
| 88 | 87 | ffnd | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) Fn ( 𝑋 × 𝑌 ) ) |
| 89 | 35 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐶 ∈ ∪ 𝑀 ) |
| 90 | 42 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐶 ∈ ∪ 𝑀 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) |
| 91 | 89 90 | sylib | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑀 ) |
| 92 | 91 | ffnd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) Fn ( 𝑋 × 𝑌 ) ) |
| 93 | eqfnfv | ⊢ ( ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) Fn ( 𝑋 × 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) Fn ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ↔ ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 𝑤 ) ) ) | |
| 94 | 88 92 93 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ↔ ∀ 𝑤 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ‘ 𝑤 ) = ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ‘ 𝑤 ) ) ) |
| 95 | 85 94 | mpbird | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
| 96 | cnco | ⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ∧ ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝑀 ) ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) | |
| 97 | 3 5 96 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) |
| 98 | 95 97 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) |