This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusgrp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) | |
| qusinv.v | ⊢ 𝑉 = ( Base ‘ 𝐺 ) | ||
| qussub.p | ⊢ − = ( -g ‘ 𝐺 ) | ||
| qussub.a | ⊢ 𝑁 = ( -g ‘ 𝐻 ) | ||
| Assertion | qussub | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) 𝑁 [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 − 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp.h | ⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) | |
| 2 | qusinv.v | ⊢ 𝑉 = ( Base ‘ 𝐺 ) | |
| 3 | qussub.p | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | qussub.a | ⊢ 𝑁 = ( -g ‘ 𝐻 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 6 | 1 2 5 | quseccl | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 8 | 1 2 5 | quseccl | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ 𝑉 ) → [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 9 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 10 | eqid | ⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) | |
| 11 | 5 9 10 4 | grpsubval | ⊢ ( ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ∧ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) 𝑁 [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) ) ) |
| 12 | 7 8 11 | 3imp3i2an | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) 𝑁 [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) ) ) |
| 13 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 14 | 1 2 13 10 | qusinv | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 15 | 14 | 3adant2 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) ) = ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) ) |
| 17 | nsgsubg | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 18 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 20 | 2 13 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝑉 ) |
| 21 | 19 20 | sylan | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝑉 ) |
| 22 | 21 | 3adant2 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝑉 ) |
| 23 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 24 | 1 2 23 9 | qusadd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 25 | 22 24 | syld3an3 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 26 | 2 23 13 3 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 27 | 26 | 3adant1 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 28 | 27 | eceq1d | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → [ ( 𝑋 − 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) = [ ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 29 | 25 28 | eqtr4d | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 − 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 30 | 12 16 29 | 3eqtrd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) 𝑁 [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 − 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) |