This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of pige3 . This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter 2pi . We translate this to algebra by looking at the function e ^ (i x ) as x goes from 0 to pi / 3 ; it moves at unit speed and travels distance 1 , hence 1 <_ _pi / 3 . (Contributed by Mario Carneiro, 21-May-2016) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pige3ALT | ⊢ 3 ≤ π |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn | ⊢ 3 ∈ ℂ | |
| 2 | 1 | mullidi | ⊢ ( 1 · 3 ) = 3 |
| 3 | tru | ⊢ ⊤ | |
| 4 | 0xr | ⊢ 0 ∈ ℝ* | |
| 5 | pirp | ⊢ π ∈ ℝ+ | |
| 6 | 3rp | ⊢ 3 ∈ ℝ+ | |
| 7 | rpdivcl | ⊢ ( ( π ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( π / 3 ) ∈ ℝ+ ) | |
| 8 | 5 6 7 | mp2an | ⊢ ( π / 3 ) ∈ ℝ+ |
| 9 | rpxr | ⊢ ( ( π / 3 ) ∈ ℝ+ → ( π / 3 ) ∈ ℝ* ) | |
| 10 | 8 9 | ax-mp | ⊢ ( π / 3 ) ∈ ℝ* |
| 11 | rpge0 | ⊢ ( ( π / 3 ) ∈ ℝ+ → 0 ≤ ( π / 3 ) ) | |
| 12 | 8 11 | ax-mp | ⊢ 0 ≤ ( π / 3 ) |
| 13 | lbicc2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( π / 3 ) ∈ ℝ* ∧ 0 ≤ ( π / 3 ) ) → 0 ∈ ( 0 [,] ( π / 3 ) ) ) | |
| 14 | 4 10 12 13 | mp3an | ⊢ 0 ∈ ( 0 [,] ( π / 3 ) ) |
| 15 | ubicc2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( π / 3 ) ∈ ℝ* ∧ 0 ≤ ( π / 3 ) ) → ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) ) | |
| 16 | 4 10 12 15 | mp3an | ⊢ ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) |
| 17 | 14 16 | pm3.2i | ⊢ ( 0 ∈ ( 0 [,] ( π / 3 ) ) ∧ ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) ) |
| 18 | 0re | ⊢ 0 ∈ ℝ | |
| 19 | 18 | a1i | ⊢ ( ⊤ → 0 ∈ ℝ ) |
| 20 | pire | ⊢ π ∈ ℝ | |
| 21 | 3re | ⊢ 3 ∈ ℝ | |
| 22 | 3ne0 | ⊢ 3 ≠ 0 | |
| 23 | 20 21 22 | redivcli | ⊢ ( π / 3 ) ∈ ℝ |
| 24 | 23 | a1i | ⊢ ( ⊤ → ( π / 3 ) ∈ ℝ ) |
| 25 | efcn | ⊢ exp ∈ ( ℂ –cn→ ℂ ) | |
| 26 | 25 | a1i | ⊢ ( ⊤ → exp ∈ ( ℂ –cn→ ℂ ) ) |
| 27 | iccssre | ⊢ ( ( 0 ∈ ℝ ∧ ( π / 3 ) ∈ ℝ ) → ( 0 [,] ( π / 3 ) ) ⊆ ℝ ) | |
| 28 | 18 23 27 | mp2an | ⊢ ( 0 [,] ( π / 3 ) ) ⊆ ℝ |
| 29 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 30 | 28 29 | sstri | ⊢ ( 0 [,] ( π / 3 ) ) ⊆ ℂ |
| 31 | resmpt | ⊢ ( ( 0 [,] ( π / 3 ) ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ↾ ( 0 [,] ( π / 3 ) ) ) = ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( i · 𝑥 ) ) ) | |
| 32 | 30 31 | mp1i | ⊢ ( ⊤ → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ↾ ( 0 [,] ( π / 3 ) ) ) = ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( i · 𝑥 ) ) ) |
| 33 | ssidd | ⊢ ( ⊤ → ℂ ⊆ ℂ ) | |
| 34 | ax-icn | ⊢ i ∈ ℂ | |
| 35 | simpr | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 36 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) | |
| 37 | 34 35 36 | sylancr | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) |
| 38 | 37 | fmpttd | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) : ℂ ⟶ ℂ ) |
| 39 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 40 | 39 | a1i | ⊢ ( ⊤ → ℂ ∈ { ℝ , ℂ } ) |
| 41 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 42 | 41 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ ) |
| 43 | 40 | dvmptid | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
| 44 | 34 | a1i | ⊢ ( ⊤ → i ∈ ℂ ) |
| 45 | 40 35 42 43 44 | dvmptcmul | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( i · 1 ) ) ) |
| 46 | 34 | mulridi | ⊢ ( i · 1 ) = i |
| 47 | 46 | mpteq2i | ⊢ ( 𝑥 ∈ ℂ ↦ ( i · 1 ) ) = ( 𝑥 ∈ ℂ ↦ i ) |
| 48 | 45 47 | eqtrdi | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ i ) ) |
| 49 | 48 | dmeqd | ⊢ ( ⊤ → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = dom ( 𝑥 ∈ ℂ ↦ i ) ) |
| 50 | 34 | elexi | ⊢ i ∈ V |
| 51 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ i ) = ( 𝑥 ∈ ℂ ↦ i ) | |
| 52 | 50 51 | dmmpti | ⊢ dom ( 𝑥 ∈ ℂ ↦ i ) = ℂ |
| 53 | 49 52 | eqtrdi | ⊢ ( ⊤ → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ℂ ) |
| 54 | dvcn | ⊢ ( ( ( ℂ ⊆ ℂ ∧ ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) : ℂ ⟶ ℂ ∧ ℂ ⊆ ℂ ) ∧ dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ℂ ) → ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) | |
| 55 | 33 38 33 53 54 | syl31anc | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 56 | rescncf | ⊢ ( ( 0 [,] ( π / 3 ) ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ↾ ( 0 [,] ( π / 3 ) ) ) ∈ ( ( 0 [,] ( π / 3 ) ) –cn→ ℂ ) ) ) | |
| 57 | 30 55 56 | mpsyl | ⊢ ( ⊤ → ( ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ↾ ( 0 [,] ( π / 3 ) ) ) ∈ ( ( 0 [,] ( π / 3 ) ) –cn→ ℂ ) ) |
| 58 | 32 57 | eqeltrrd | ⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( i · 𝑥 ) ) ∈ ( ( 0 [,] ( π / 3 ) ) –cn→ ℂ ) ) |
| 59 | 26 58 | cncfmpt1f | ⊢ ( ⊤ → ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ∈ ( ( 0 [,] ( π / 3 ) ) –cn→ ℂ ) ) |
| 60 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 61 | 60 | a1i | ⊢ ( ⊤ → ℝ ∈ { ℝ , ℂ } ) |
| 62 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 63 | efcl | ⊢ ( ( i · 𝑥 ) ∈ ℂ → ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ ) | |
| 64 | 37 63 | syl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ ) |
| 65 | 62 64 | sylan2 | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ ) |
| 66 | mulcl | ⊢ ( ( ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ ∧ i ∈ ℂ ) → ( ( exp ‘ ( i · 𝑥 ) ) · i ) ∈ ℂ ) | |
| 67 | 64 34 66 | sylancl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( ( exp ‘ ( i · 𝑥 ) ) · i ) ∈ ℂ ) |
| 68 | 62 67 | sylan2 | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( ( exp ‘ ( i · 𝑥 ) ) · i ) ∈ ℂ ) |
| 69 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 70 | 69 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 71 | toponmax | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) → ℂ ∈ ( TopOpen ‘ ℂfld ) ) | |
| 72 | 70 71 | mp1i | ⊢ ( ⊤ → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
| 73 | 29 | a1i | ⊢ ( ⊤ → ℝ ⊆ ℂ ) |
| 74 | dfss2 | ⊢ ( ℝ ⊆ ℂ ↔ ( ℝ ∩ ℂ ) = ℝ ) | |
| 75 | 73 74 | sylib | ⊢ ( ⊤ → ( ℝ ∩ ℂ ) = ℝ ) |
| 76 | 34 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → i ∈ ℂ ) |
| 77 | efcl | ⊢ ( 𝑦 ∈ ℂ → ( exp ‘ 𝑦 ) ∈ ℂ ) | |
| 78 | 77 | adantl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ℂ ) → ( exp ‘ 𝑦 ) ∈ ℂ ) |
| 79 | dvef | ⊢ ( ℂ D exp ) = exp | |
| 80 | eff | ⊢ exp : ℂ ⟶ ℂ | |
| 81 | 80 | a1i | ⊢ ( ⊤ → exp : ℂ ⟶ ℂ ) |
| 82 | 81 | feqmptd | ⊢ ( ⊤ → exp = ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) |
| 83 | 82 | oveq2d | ⊢ ( ⊤ → ( ℂ D exp ) = ( ℂ D ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) ) |
| 84 | 79 83 82 | 3eqtr3a | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( exp ‘ 𝑦 ) ) ) |
| 85 | fveq2 | ⊢ ( 𝑦 = ( i · 𝑥 ) → ( exp ‘ 𝑦 ) = ( exp ‘ ( i · 𝑥 ) ) ) | |
| 86 | 40 40 37 76 78 78 48 84 85 85 | dvmptco | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ) |
| 87 | 69 61 72 75 64 67 86 | dvmptres3 | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ) |
| 88 | 28 | a1i | ⊢ ( ⊤ → ( 0 [,] ( π / 3 ) ) ⊆ ℝ ) |
| 89 | 69 | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 90 | iccntr | ⊢ ( ( 0 ∈ ℝ ∧ ( π / 3 ) ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] ( π / 3 ) ) ) = ( 0 (,) ( π / 3 ) ) ) | |
| 91 | 18 24 90 | sylancr | ⊢ ( ⊤ → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 0 [,] ( π / 3 ) ) ) = ( 0 (,) ( π / 3 ) ) ) |
| 92 | 61 65 68 87 88 89 69 91 | dvmptres2 | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ) |
| 93 | 92 | dmeqd | ⊢ ( ⊤ → dom ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = dom ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ) |
| 94 | ovex | ⊢ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ∈ V | |
| 95 | eqid | ⊢ ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) = ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) | |
| 96 | 94 95 | dmmpti | ⊢ dom ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) = ( 0 (,) ( π / 3 ) ) |
| 97 | 93 96 | eqtrdi | ⊢ ( ⊤ → dom ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) = ( 0 (,) ( π / 3 ) ) ) |
| 98 | 1re | ⊢ 1 ∈ ℝ | |
| 99 | 98 | a1i | ⊢ ( ⊤ → 1 ∈ ℝ ) |
| 100 | 92 | fveq1d | ⊢ ( ⊤ → ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ‘ 𝑦 ) ) |
| 101 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( i · 𝑥 ) = ( i · 𝑦 ) ) | |
| 102 | 101 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · 𝑦 ) ) ) |
| 103 | 102 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( exp ‘ ( i · 𝑥 ) ) · i ) = ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) |
| 104 | 103 95 94 | fvmpt3i | ⊢ ( 𝑦 ∈ ( 0 (,) ( π / 3 ) ) → ( ( 𝑥 ∈ ( 0 (,) ( π / 3 ) ) ↦ ( ( exp ‘ ( i · 𝑥 ) ) · i ) ) ‘ 𝑦 ) = ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) |
| 105 | 100 104 | sylan9eq | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) = ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) |
| 106 | 105 | fveq2d | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) ) = ( abs ‘ ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) ) |
| 107 | ioossre | ⊢ ( 0 (,) ( π / 3 ) ) ⊆ ℝ | |
| 108 | 107 | a1i | ⊢ ( ⊤ → ( 0 (,) ( π / 3 ) ) ⊆ ℝ ) |
| 109 | 108 | sselda | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → 𝑦 ∈ ℝ ) |
| 110 | 109 | recnd | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → 𝑦 ∈ ℂ ) |
| 111 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( i · 𝑦 ) ∈ ℂ ) | |
| 112 | 34 110 111 | sylancr | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( i · 𝑦 ) ∈ ℂ ) |
| 113 | efcl | ⊢ ( ( i · 𝑦 ) ∈ ℂ → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ) | |
| 114 | 112 113 | syl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ) |
| 115 | absmul | ⊢ ( ( ( exp ‘ ( i · 𝑦 ) ) ∈ ℂ ∧ i ∈ ℂ ) → ( abs ‘ ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) = ( ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) · ( abs ‘ i ) ) ) | |
| 116 | 114 34 115 | sylancl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( ( exp ‘ ( i · 𝑦 ) ) · i ) ) = ( ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) · ( abs ‘ i ) ) ) |
| 117 | absefi | ⊢ ( 𝑦 ∈ ℝ → ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) = 1 ) | |
| 118 | 109 117 | syl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) = 1 ) |
| 119 | absi | ⊢ ( abs ‘ i ) = 1 | |
| 120 | 119 | a1i | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ i ) = 1 ) |
| 121 | 118 120 | oveq12d | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) · ( abs ‘ i ) ) = ( 1 · 1 ) ) |
| 122 | 41 | mulridi | ⊢ ( 1 · 1 ) = 1 |
| 123 | 121 122 | eqtrdi | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( ( abs ‘ ( exp ‘ ( i · 𝑦 ) ) ) · ( abs ‘ i ) ) = 1 ) |
| 124 | 106 116 123 | 3eqtrd | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) ) = 1 ) |
| 125 | 1le1 | ⊢ 1 ≤ 1 | |
| 126 | 124 125 | eqbrtrdi | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( 0 (,) ( π / 3 ) ) ) → ( abs ‘ ( ( ℝ D ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ) ‘ 𝑦 ) ) ≤ 1 ) |
| 127 | 19 24 59 97 99 126 | dvlip | ⊢ ( ( ⊤ ∧ ( 0 ∈ ( 0 [,] ( π / 3 ) ) ∧ ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) ) ) → ( abs ‘ ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) ) ≤ ( 1 · ( abs ‘ ( 0 − ( π / 3 ) ) ) ) ) |
| 128 | 3 17 127 | mp2an | ⊢ ( abs ‘ ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) ) ≤ ( 1 · ( abs ‘ ( 0 − ( π / 3 ) ) ) ) |
| 129 | oveq2 | ⊢ ( 𝑥 = 0 → ( i · 𝑥 ) = ( i · 0 ) ) | |
| 130 | it0e0 | ⊢ ( i · 0 ) = 0 | |
| 131 | 129 130 | eqtrdi | ⊢ ( 𝑥 = 0 → ( i · 𝑥 ) = 0 ) |
| 132 | 131 | fveq2d | ⊢ ( 𝑥 = 0 → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ 0 ) ) |
| 133 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 134 | 132 133 | eqtrdi | ⊢ ( 𝑥 = 0 → ( exp ‘ ( i · 𝑥 ) ) = 1 ) |
| 135 | eqid | ⊢ ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) | |
| 136 | fvex | ⊢ ( exp ‘ ( i · 𝑥 ) ) ∈ V | |
| 137 | 134 135 136 | fvmpt3i | ⊢ ( 0 ∈ ( 0 [,] ( π / 3 ) ) → ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) = 1 ) |
| 138 | 14 137 | ax-mp | ⊢ ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) = 1 |
| 139 | oveq2 | ⊢ ( 𝑥 = ( π / 3 ) → ( i · 𝑥 ) = ( i · ( π / 3 ) ) ) | |
| 140 | 139 | fveq2d | ⊢ ( 𝑥 = ( π / 3 ) → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · ( π / 3 ) ) ) ) |
| 141 | 140 135 136 | fvmpt3i | ⊢ ( ( π / 3 ) ∈ ( 0 [,] ( π / 3 ) ) → ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) = ( exp ‘ ( i · ( π / 3 ) ) ) ) |
| 142 | 16 141 | ax-mp | ⊢ ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) = ( exp ‘ ( i · ( π / 3 ) ) ) |
| 143 | 138 142 | oveq12i | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) = ( 1 − ( exp ‘ ( i · ( π / 3 ) ) ) ) |
| 144 | 23 | recni | ⊢ ( π / 3 ) ∈ ℂ |
| 145 | 34 144 | mulcli | ⊢ ( i · ( π / 3 ) ) ∈ ℂ |
| 146 | efcl | ⊢ ( ( i · ( π / 3 ) ) ∈ ℂ → ( exp ‘ ( i · ( π / 3 ) ) ) ∈ ℂ ) | |
| 147 | 145 146 | ax-mp | ⊢ ( exp ‘ ( i · ( π / 3 ) ) ) ∈ ℂ |
| 148 | negicn | ⊢ - i ∈ ℂ | |
| 149 | 148 144 | mulcli | ⊢ ( - i · ( π / 3 ) ) ∈ ℂ |
| 150 | efcl | ⊢ ( ( - i · ( π / 3 ) ) ∈ ℂ → ( exp ‘ ( - i · ( π / 3 ) ) ) ∈ ℂ ) | |
| 151 | 149 150 | ax-mp | ⊢ ( exp ‘ ( - i · ( π / 3 ) ) ) ∈ ℂ |
| 152 | cosval | ⊢ ( ( π / 3 ) ∈ ℂ → ( cos ‘ ( π / 3 ) ) = ( ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) / 2 ) ) | |
| 153 | 144 152 | ax-mp | ⊢ ( cos ‘ ( π / 3 ) ) = ( ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) / 2 ) |
| 154 | sincos3rdpi | ⊢ ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) ) | |
| 155 | 154 | simpri | ⊢ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) |
| 156 | 153 155 | eqtr3i | ⊢ ( ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) / 2 ) = ( 1 / 2 ) |
| 157 | 147 151 | addcli | ⊢ ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) ∈ ℂ |
| 158 | 2cn | ⊢ 2 ∈ ℂ | |
| 159 | 2ne0 | ⊢ 2 ≠ 0 | |
| 160 | 157 41 158 159 | div11i | ⊢ ( ( ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) / 2 ) = ( 1 / 2 ) ↔ ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) = 1 ) |
| 161 | 156 160 | mpbi | ⊢ ( ( exp ‘ ( i · ( π / 3 ) ) ) + ( exp ‘ ( - i · ( π / 3 ) ) ) ) = 1 |
| 162 | 41 147 151 161 | subaddrii | ⊢ ( 1 − ( exp ‘ ( i · ( π / 3 ) ) ) ) = ( exp ‘ ( - i · ( π / 3 ) ) ) |
| 163 | mulneg12 | ⊢ ( ( i ∈ ℂ ∧ ( π / 3 ) ∈ ℂ ) → ( - i · ( π / 3 ) ) = ( i · - ( π / 3 ) ) ) | |
| 164 | 34 144 163 | mp2an | ⊢ ( - i · ( π / 3 ) ) = ( i · - ( π / 3 ) ) |
| 165 | 164 | fveq2i | ⊢ ( exp ‘ ( - i · ( π / 3 ) ) ) = ( exp ‘ ( i · - ( π / 3 ) ) ) |
| 166 | 143 162 165 | 3eqtri | ⊢ ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) = ( exp ‘ ( i · - ( π / 3 ) ) ) |
| 167 | 166 | fveq2i | ⊢ ( abs ‘ ( ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ 0 ) − ( ( 𝑥 ∈ ( 0 [,] ( π / 3 ) ) ↦ ( exp ‘ ( i · 𝑥 ) ) ) ‘ ( π / 3 ) ) ) ) = ( abs ‘ ( exp ‘ ( i · - ( π / 3 ) ) ) ) |
| 168 | 144 | absnegi | ⊢ ( abs ‘ - ( π / 3 ) ) = ( abs ‘ ( π / 3 ) ) |
| 169 | df-neg | ⊢ - ( π / 3 ) = ( 0 − ( π / 3 ) ) | |
| 170 | 169 | fveq2i | ⊢ ( abs ‘ - ( π / 3 ) ) = ( abs ‘ ( 0 − ( π / 3 ) ) ) |
| 171 | 168 170 | eqtr3i | ⊢ ( abs ‘ ( π / 3 ) ) = ( abs ‘ ( 0 − ( π / 3 ) ) ) |
| 172 | rprege0 | ⊢ ( ( π / 3 ) ∈ ℝ+ → ( ( π / 3 ) ∈ ℝ ∧ 0 ≤ ( π / 3 ) ) ) | |
| 173 | absid | ⊢ ( ( ( π / 3 ) ∈ ℝ ∧ 0 ≤ ( π / 3 ) ) → ( abs ‘ ( π / 3 ) ) = ( π / 3 ) ) | |
| 174 | 8 172 173 | mp2b | ⊢ ( abs ‘ ( π / 3 ) ) = ( π / 3 ) |
| 175 | 171 174 | eqtr3i | ⊢ ( abs ‘ ( 0 − ( π / 3 ) ) ) = ( π / 3 ) |
| 176 | 175 | oveq2i | ⊢ ( 1 · ( abs ‘ ( 0 − ( π / 3 ) ) ) ) = ( 1 · ( π / 3 ) ) |
| 177 | 128 167 176 | 3brtr3i | ⊢ ( abs ‘ ( exp ‘ ( i · - ( π / 3 ) ) ) ) ≤ ( 1 · ( π / 3 ) ) |
| 178 | 23 | renegcli | ⊢ - ( π / 3 ) ∈ ℝ |
| 179 | absefi | ⊢ ( - ( π / 3 ) ∈ ℝ → ( abs ‘ ( exp ‘ ( i · - ( π / 3 ) ) ) ) = 1 ) | |
| 180 | 178 179 | ax-mp | ⊢ ( abs ‘ ( exp ‘ ( i · - ( π / 3 ) ) ) ) = 1 |
| 181 | 144 | mullidi | ⊢ ( 1 · ( π / 3 ) ) = ( π / 3 ) |
| 182 | 177 180 181 | 3brtr3i | ⊢ 1 ≤ ( π / 3 ) |
| 183 | 3pos | ⊢ 0 < 3 | |
| 184 | 21 183 | pm3.2i | ⊢ ( 3 ∈ ℝ ∧ 0 < 3 ) |
| 185 | lemuldiv | ⊢ ( ( 1 ∈ ℝ ∧ π ∈ ℝ ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ) → ( ( 1 · 3 ) ≤ π ↔ 1 ≤ ( π / 3 ) ) ) | |
| 186 | 98 20 184 185 | mp3an | ⊢ ( ( 1 · 3 ) ≤ π ↔ 1 ≤ ( π / 3 ) ) |
| 187 | 182 186 | mpbir | ⊢ ( 1 · 3 ) ≤ π |
| 188 | 2 187 | eqbrtrri | ⊢ 3 ≤ π |