This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One-to-one relationship for division. (Contributed by NM, 20-Aug-2001)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| divclz.2 | ⊢ 𝐵 ∈ ℂ | ||
| divmulz.3 | ⊢ 𝐶 ∈ ℂ | ||
| divass.4 | ⊢ 𝐶 ≠ 0 | ||
| Assertion | div11i | ⊢ ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ↔ 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | divclz.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | divmulz.3 | ⊢ 𝐶 ∈ ℂ | |
| 4 | divass.4 | ⊢ 𝐶 ≠ 0 | |
| 5 | 3 4 | pm3.2i | ⊢ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) |
| 6 | div11 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ↔ 𝐴 = 𝐵 ) ) | |
| 7 | 1 2 5 6 | mp3an | ⊢ ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ↔ 𝐴 = 𝐵 ) |