This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with derivative bounded by M is M-Lipschitz continuous. (Contributed by Mario Carneiro, 3-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvlip.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| dvlip.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| dvlip.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | ||
| dvlip.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| dvlip.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| dvlip.l | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ) | ||
| Assertion | dvlip | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvlip.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | dvlip.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | dvlip.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | |
| 4 | dvlip.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 5 | dvlip.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 6 | dvlip.l | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ) | |
| 7 | fveq2 | ⊢ ( 𝑎 = 𝑌 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝑎 = 𝑌 → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝑎 = 𝑌 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑎 = 𝑌 → ( 𝑏 − 𝑎 ) = ( 𝑏 − 𝑌 ) ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑎 = 𝑌 → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( abs ‘ ( 𝑏 − 𝑌 ) ) ) |
| 12 | 11 | oveq2d | ⊢ ( 𝑎 = 𝑌 → ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ) |
| 13 | 9 12 | breq12d | ⊢ ( 𝑎 = 𝑌 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑎 = 𝑌 → ( ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ↔ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑏 = 𝑋 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 16 | 15 | fvoveq1d | ⊢ ( 𝑏 = 𝑋 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 17 | fvoveq1 | ⊢ ( 𝑏 = 𝑋 → ( abs ‘ ( 𝑏 − 𝑌 ) ) = ( abs ‘ ( 𝑋 − 𝑌 ) ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑏 = 𝑋 → ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) |
| 19 | 16 18 | breq12d | ⊢ ( 𝑏 = 𝑋 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑏 = 𝑋 → ( ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑌 ) ) ) ) ↔ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 22 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 23 | 21 22 | oveqan12d | ⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) |
| 24 | 23 | fveq2d | ⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 25 | oveq12 | ⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( 𝑦 − 𝑥 ) = ( 𝑏 − 𝑎 ) ) | |
| 26 | 25 | fveq2d | ⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) = ( abs ‘ ( 𝑏 − 𝑎 ) ) ) |
| 27 | 26 | oveq2d | ⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) |
| 28 | 24 27 | breq12d | ⊢ ( ( 𝑦 = 𝑏 ∧ 𝑥 = 𝑎 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
| 29 | 28 | ancoms | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
| 30 | fveq2 | ⊢ ( 𝑦 = 𝑎 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 31 | fveq2 | ⊢ ( 𝑥 = 𝑏 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 32 | 30 31 | oveqan12d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) |
| 33 | 32 | fveq2d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 34 | oveq12 | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( 𝑦 − 𝑥 ) = ( 𝑎 − 𝑏 ) ) | |
| 35 | 34 | fveq2d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) = ( abs ‘ ( 𝑎 − 𝑏 ) ) ) |
| 36 | 35 | oveq2d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) |
| 37 | 33 36 | breq12d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑥 = 𝑏 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) ) |
| 38 | 37 | ancoms | ⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑎 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑦 − 𝑥 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) ) |
| 39 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 40 | 1 2 39 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 41 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | |
| 42 | 3 41 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 43 | ffvelcdm | ⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) | |
| 44 | ffvelcdm | ⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) | |
| 45 | 43 44 | anim12dan | ⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) ) |
| 46 | 42 45 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) ) |
| 47 | 46 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) |
| 48 | 46 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
| 49 | 47 48 | abssubd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 50 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 51 | 40 50 | sstrdi | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 52 | 51 | sselda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑏 ∈ ℂ ) |
| 53 | 52 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑏 ∈ ℂ ) |
| 54 | 51 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑎 ∈ ℂ ) |
| 55 | 54 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑎 ∈ ℂ ) |
| 56 | 53 55 | abssubd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( abs ‘ ( 𝑎 − 𝑏 ) ) ) |
| 57 | 56 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) |
| 58 | 49 57 | breq12d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑎 − 𝑏 ) ) ) ) ) |
| 59 | 42 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 60 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 61 | 59 60 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) |
| 62 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 63 | 59 62 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
| 64 | 61 63 | subeq0ad | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) = 0 ↔ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
| 65 | 64 | biimpar | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) = 0 ) |
| 66 | 65 | abs00bd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = 0 ) |
| 67 | 40 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 68 | 67 62 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ℝ ) |
| 69 | 68 | rexrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ℝ* ) |
| 70 | 67 60 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ℝ ) |
| 71 | 70 | rexrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ℝ* ) |
| 72 | ioon0 | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( ( 𝑎 (,) 𝑏 ) ≠ ∅ ↔ 𝑎 < 𝑏 ) ) | |
| 73 | 69 71 72 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑎 (,) 𝑏 ) ≠ ∅ ↔ 𝑎 < 𝑏 ) ) |
| 74 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 𝑀 ∈ ℝ ) |
| 75 | 70 68 | resubcld | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑏 − 𝑎 ) ∈ ℝ ) |
| 76 | 75 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝑏 − 𝑎 ) ∈ ℝ ) |
| 77 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐴 ∈ ℝ ) |
| 78 | 77 | rexrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐴 ∈ ℝ* ) |
| 79 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐵 ∈ ℝ ) |
| 80 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑎 ∈ ℝ ∧ 𝐴 ≤ 𝑎 ∧ 𝑎 ≤ 𝐵 ) ) ) | |
| 81 | 77 79 80 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑎 ∈ ℝ ∧ 𝐴 ≤ 𝑎 ∧ 𝑎 ≤ 𝐵 ) ) ) |
| 82 | 62 81 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 ∈ ℝ ∧ 𝐴 ≤ 𝑎 ∧ 𝑎 ≤ 𝐵 ) ) |
| 83 | 82 | simp2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐴 ≤ 𝑎 ) |
| 84 | iooss1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑎 ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝑏 ) ) | |
| 85 | 78 83 84 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝑏 ) ) |
| 86 | 79 | rexrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐵 ∈ ℝ* ) |
| 87 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑏 ∈ ℝ ∧ 𝐴 ≤ 𝑏 ∧ 𝑏 ≤ 𝐵 ) ) ) | |
| 88 | 77 79 87 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑏 ∈ ℝ ∧ 𝐴 ≤ 𝑏 ∧ 𝑏 ≤ 𝐵 ) ) ) |
| 89 | 60 88 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑏 ∈ ℝ ∧ 𝐴 ≤ 𝑏 ∧ 𝑏 ≤ 𝐵 ) ) |
| 90 | 89 | simp3d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ≤ 𝐵 ) |
| 91 | iooss2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑏 ≤ 𝐵 ) → ( 𝐴 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 92 | 86 90 91 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐴 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 93 | 85 92 | sstrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 94 | ssn0 | ⊢ ( ( ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) | |
| 95 | 93 94 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
| 96 | n0 | ⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 97 | 0red | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ∈ ℝ ) | |
| 98 | dvf | ⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ | |
| 99 | 4 | feq2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 100 | 98 99 | mpbii | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 101 | 100 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 102 | 101 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 103 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑀 ∈ ℝ ) |
| 104 | 101 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 105 | 97 102 103 104 6 | letrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ 𝑀 ) |
| 106 | 105 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 0 ≤ 𝑀 ) ) |
| 107 | 106 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 0 ≤ 𝑀 ) ) |
| 108 | 107 | imp | ⊢ ( ( 𝜑 ∧ ∃ 𝑥 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ≤ 𝑀 ) |
| 109 | 96 108 | sylan2b | ⊢ ( ( 𝜑 ∧ ( 𝐴 (,) 𝐵 ) ≠ ∅ ) → 0 ≤ 𝑀 ) |
| 110 | 109 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐴 (,) 𝐵 ) ≠ ∅ ) → 0 ≤ 𝑀 ) |
| 111 | 95 110 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 0 ≤ 𝑀 ) |
| 112 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ≤ 𝑏 ) | |
| 113 | 70 68 | subge0d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 0 ≤ ( 𝑏 − 𝑎 ) ↔ 𝑎 ≤ 𝑏 ) ) |
| 114 | 112 113 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 0 ≤ ( 𝑏 − 𝑎 ) ) |
| 115 | 114 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 0 ≤ ( 𝑏 − 𝑎 ) ) |
| 116 | 74 76 111 115 | mulge0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 117 | 116 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑎 (,) 𝑏 ) ≠ ∅ → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
| 118 | 73 117 | sylbird | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 < 𝑏 → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
| 119 | 70 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ℂ ) |
| 120 | 68 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ℂ ) |
| 121 | 119 120 | subeq0ad | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑏 − 𝑎 ) = 0 ↔ 𝑏 = 𝑎 ) ) |
| 122 | equcom | ⊢ ( 𝑏 = 𝑎 ↔ 𝑎 = 𝑏 ) | |
| 123 | 121 122 | bitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑏 − 𝑎 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
| 124 | 0re | ⊢ 0 ∈ ℝ | |
| 125 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑀 ∈ ℝ ) |
| 126 | 125 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑀 ∈ ℂ ) |
| 127 | 126 | mul01d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑀 · 0 ) = 0 ) |
| 128 | 127 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 0 = ( 𝑀 · 0 ) ) |
| 129 | eqle | ⊢ ( ( 0 ∈ ℝ ∧ 0 = ( 𝑀 · 0 ) ) → 0 ≤ ( 𝑀 · 0 ) ) | |
| 130 | 124 128 129 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 0 ≤ ( 𝑀 · 0 ) ) |
| 131 | oveq2 | ⊢ ( ( 𝑏 − 𝑎 ) = 0 → ( 𝑀 · ( 𝑏 − 𝑎 ) ) = ( 𝑀 · 0 ) ) | |
| 132 | 131 | breq2d | ⊢ ( ( 𝑏 − 𝑎 ) = 0 → ( 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ↔ 0 ≤ ( 𝑀 · 0 ) ) ) |
| 133 | 130 132 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝑏 − 𝑎 ) = 0 → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
| 134 | 123 133 | sylbird | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 = 𝑏 → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
| 135 | 68 70 | leloed | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 < 𝑏 ∨ 𝑎 = 𝑏 ) ) ) |
| 136 | 112 135 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 < 𝑏 ∨ 𝑎 = 𝑏 ) ) |
| 137 | 118 134 136 | mpjaod | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 138 | 137 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → 0 ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 139 | 66 138 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 140 | 61 63 | subcld | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ) |
| 141 | 140 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ) |
| 142 | 141 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℝ ) |
| 143 | 142 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
| 144 | 75 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑏 − 𝑎 ) ∈ ℝ ) |
| 145 | 144 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑏 − 𝑎 ) ∈ ℂ ) |
| 146 | 136 | ord | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ¬ 𝑎 < 𝑏 → 𝑎 = 𝑏 ) ) |
| 147 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 148 | 147 | eqcomd | ⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 149 | 146 148 | syl6 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ¬ 𝑎 < 𝑏 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
| 150 | 149 | necon1ad | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) → 𝑎 < 𝑏 ) ) |
| 151 | 150 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝑎 < 𝑏 ) |
| 152 | 68 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝑎 ∈ ℝ ) |
| 153 | 70 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝑏 ∈ ℝ ) |
| 154 | 152 153 | posdifd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 < 𝑏 ↔ 0 < ( 𝑏 − 𝑎 ) ) ) |
| 155 | 151 154 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 0 < ( 𝑏 − 𝑎 ) ) |
| 156 | 155 | gt0ne0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑏 − 𝑎 ) ≠ 0 ) |
| 157 | 143 145 156 | divrec2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) / ( 𝑏 − 𝑎 ) ) = ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 158 | iccss2 | ⊢ ( ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) ) | |
| 159 | 62 60 158 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 160 | 159 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 161 | 160 | sselda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 162 | 42 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 163 | 162 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 164 | 161 163 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 165 | 140 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ) |
| 166 | 64 | necon3bid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ↔ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ) |
| 167 | 166 | biimpar | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ) |
| 168 | 167 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ) |
| 169 | 164 165 168 | divcld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
| 170 | 162 160 | feqresmpt | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 171 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) | |
| 172 | oveq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) | |
| 173 | 164 170 171 172 | fmptco | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∘ ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ) = ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 174 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 175 | 174 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℜ : ℂ ⟶ ℝ ) |
| 176 | 175 | feqmptd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℜ = ( 𝑥 ∈ ℂ ↦ ( ℜ ‘ 𝑥 ) ) ) |
| 177 | fveq2 | ⊢ ( 𝑥 = ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) | |
| 178 | 169 173 176 177 | fmptco | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ∘ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∘ ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ) ) = ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
| 179 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 180 | rescncf | ⊢ ( ( 𝑎 [,] 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℂ ) ) ) | |
| 181 | 159 179 180 | sylc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℂ ) ) |
| 182 | 181 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℂ ) ) |
| 183 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) | |
| 184 | 183 | divccncf | ⊢ ( ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 185 | 141 167 184 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 186 | 182 185 | cncfco | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∘ ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℂ ) ) |
| 187 | recncf | ⊢ ℜ ∈ ( ℂ –cn→ ℝ ) | |
| 188 | 187 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℜ ∈ ( ℂ –cn→ ℝ ) ) |
| 189 | 186 188 | cncfco | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ∘ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∘ ( 𝐹 ↾ ( 𝑎 [,] 𝑏 ) ) ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℝ ) ) |
| 190 | 178 189 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ∈ ( ( 𝑎 [,] 𝑏 ) –cn→ ℝ ) ) |
| 191 | 50 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℝ ⊆ ℂ ) |
| 192 | iccssre | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 [,] 𝑏 ) ⊆ ℝ ) | |
| 193 | 152 153 192 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 [,] 𝑏 ) ⊆ ℝ ) |
| 194 | 169 | recld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℝ ) |
| 195 | 194 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℂ ) |
| 196 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 197 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 198 | iccntr | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 [,] 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) ) | |
| 199 | 68 70 198 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 [,] 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) ) |
| 200 | 199 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 [,] 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) ) |
| 201 | 191 193 195 196 197 200 | dvmptntr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ) |
| 202 | ioossicc | ⊢ ( 𝑎 (,) 𝑏 ) ⊆ ( 𝑎 [,] 𝑏 ) | |
| 203 | 202 | sseli | ⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ) |
| 204 | 203 169 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
| 205 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ V ) | |
| 206 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 207 | 206 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 208 | 203 164 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 209 | 93 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 210 | 209 | sselda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 211 | 100 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 212 | 211 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℂ ) |
| 213 | 210 212 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℂ ) |
| 214 | 40 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 215 | ioossre | ⊢ ( 𝑎 (,) 𝑏 ) ⊆ ℝ | |
| 216 | 215 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ℝ ) |
| 217 | 197 196 | dvres | ⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝑎 (,) 𝑏 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) ) ) |
| 218 | 191 162 214 216 217 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) ) ) |
| 219 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 220 | iooretop | ⊢ ( 𝑎 (,) 𝑏 ) ∈ ( topGen ‘ ran (,) ) | |
| 221 | isopn3i | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝑎 (,) 𝑏 ) ∈ ( topGen ‘ ran (,) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) ) | |
| 222 | 219 220 221 | mp2an | ⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) = ( 𝑎 (,) 𝑏 ) |
| 223 | 222 | reseq2i | ⊢ ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑎 (,) 𝑏 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) |
| 224 | 218 223 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ) |
| 225 | 202 160 | sstrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝑎 (,) 𝑏 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 226 | 162 225 | feqresmpt | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 227 | 226 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝐹 ↾ ( 𝑎 (,) 𝑏 ) ) ) = ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 228 | 100 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 229 | 228 93 | fssresd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) : ( 𝑎 (,) 𝑏 ) ⟶ ℂ ) |
| 230 | 229 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ‘ 𝑦 ) ) ) |
| 231 | 230 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ‘ 𝑦 ) ) ) |
| 232 | fvres | ⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) | |
| 233 | 232 | mpteq2ia | ⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) ‘ 𝑦 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) |
| 234 | 231 233 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ℝ D 𝐹 ) ↾ ( 𝑎 (,) 𝑏 ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 235 | 224 227 234 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 236 | 207 208 213 235 141 167 | dvmptdivc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 237 | 204 205 236 | dvmptre | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
| 238 | 201 237 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
| 239 | 238 | dmeqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → dom ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = dom ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
| 240 | dmmptg | ⊢ ( ∀ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V → dom ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑎 (,) 𝑏 ) ) | |
| 241 | fvex | ⊢ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V | |
| 242 | 241 | a1i | ⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V ) |
| 243 | 240 242 | mprg | ⊢ dom ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑎 (,) 𝑏 ) |
| 244 | 239 243 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → dom ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) = ( 𝑎 (,) 𝑏 ) ) |
| 245 | 152 153 151 190 244 | mvth | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ) |
| 246 | 238 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑥 ) ) |
| 247 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) | |
| 248 | 247 | fvoveq1d | ⊢ ( 𝑦 = 𝑥 → ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 249 | eqid | ⊢ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) | |
| 250 | fvex | ⊢ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V | |
| 251 | 248 249 250 | fvmpt | ⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ( ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ↦ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑥 ) = ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 252 | 246 251 | sylan9eq | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 253 | ubicc2 | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝑎 ≤ 𝑏 ) → 𝑏 ∈ ( 𝑎 [,] 𝑏 ) ) | |
| 254 | 69 71 112 253 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑏 ∈ ( 𝑎 [,] 𝑏 ) ) |
| 255 | 254 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑏 ∈ ( 𝑎 [,] 𝑏 ) ) |
| 256 | 21 | fvoveq1d | ⊢ ( 𝑦 = 𝑏 → ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 257 | eqid | ⊢ ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) | |
| 258 | fvex | ⊢ ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V | |
| 259 | 256 257 258 | fvmpt | ⊢ ( 𝑏 ∈ ( 𝑎 [,] 𝑏 ) → ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 260 | 255 259 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 261 | lbicc2 | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝑎 ≤ 𝑏 ) → 𝑎 ∈ ( 𝑎 [,] 𝑏 ) ) | |
| 262 | 69 71 112 261 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → 𝑎 ∈ ( 𝑎 [,] 𝑏 ) ) |
| 263 | 262 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑎 ∈ ( 𝑎 [,] 𝑏 ) ) |
| 264 | 30 | fvoveq1d | ⊢ ( 𝑦 = 𝑎 → ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 265 | fvex | ⊢ ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ V | |
| 266 | 264 257 265 | fvmpt | ⊢ ( 𝑎 ∈ ( 𝑎 [,] 𝑏 ) → ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 267 | 263 266 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) = ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 268 | 260 267 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) = ( ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) − ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
| 269 | 61 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℂ ) |
| 270 | 269 141 167 | divcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
| 271 | 63 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
| 272 | 271 141 167 | divcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
| 273 | 270 272 | resubd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ‘ ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) − ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) |
| 274 | 269 271 141 167 | divsubdird | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 275 | 141 167 | dividd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = 1 ) |
| 276 | 274 275 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = 1 ) |
| 277 | 276 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ‘ ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = ( ℜ ‘ 1 ) ) |
| 278 | re1 | ⊢ ( ℜ ‘ 1 ) = 1 | |
| 279 | 277 278 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ℜ ‘ ( ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) − ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = 1 ) |
| 280 | 273 279 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) − ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = 1 ) |
| 281 | 280 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( 𝐹 ‘ 𝑏 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) − ( ℜ ‘ ( ( 𝐹 ‘ 𝑎 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) = 1 ) |
| 282 | 268 281 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) = 1 ) |
| 283 | 282 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) ) |
| 284 | 252 283 | eqeq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ↔ ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) ) ) |
| 285 | 284 | rexbidva | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ( ℝ D ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑏 ) − ( ( 𝑦 ∈ ( 𝑎 [,] 𝑏 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑦 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) ‘ 𝑎 ) ) / ( 𝑏 − 𝑎 ) ) ↔ ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) ) ) |
| 286 | 245 285 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) ) |
| 287 | 209 | sselda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 288 | 211 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 289 | 287 288 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 290 | 140 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ∈ ℂ ) |
| 291 | 167 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ≠ 0 ) |
| 292 | 289 290 291 | divcld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℂ ) |
| 293 | 292 | recld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℝ ) |
| 294 | 142 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℝ ) |
| 295 | 293 294 | remulcld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℝ ) |
| 296 | 289 | abscld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 297 | 125 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑀 ∈ ℝ ) |
| 298 | 292 | abscld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ∈ ℝ ) |
| 299 | 141 | absge0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 300 | 299 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 301 | 292 | releabsd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 302 | 293 298 294 300 301 | lemul1ad | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ ( ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 303 | 292 290 | absmuld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) · ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 304 | 289 290 291 | divcan1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) · ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 305 | 304 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) · ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 306 | 303 305 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 307 | 302 306 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 308 | 6 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ) |
| 309 | 287 308 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑀 ) |
| 310 | 295 296 297 307 309 | letrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) |
| 311 | oveq1 | ⊢ ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ) | |
| 312 | 311 | breq1d | ⊢ ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) → ( ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ↔ ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) ) |
| 313 | 310 312 | syl5ibcom | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) → ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) ) |
| 314 | 313 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ∃ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ( ℜ ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) / ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) = ( 1 / ( 𝑏 − 𝑎 ) ) → ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) ) |
| 315 | 286 314 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( 1 / ( 𝑏 − 𝑎 ) ) · ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ) ≤ 𝑀 ) |
| 316 | 157 315 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) / ( 𝑏 − 𝑎 ) ) ≤ 𝑀 ) |
| 317 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → 𝑀 ∈ ℝ ) |
| 318 | ledivmul2 | ⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( ( 𝑏 − 𝑎 ) ∈ ℝ ∧ 0 < ( 𝑏 − 𝑎 ) ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) / ( 𝑏 − 𝑎 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) | |
| 319 | 142 317 144 155 318 | syl112anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) / ( 𝑏 − 𝑎 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) ) |
| 320 | 316 319 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ≠ ( 𝐹 ‘ 𝑎 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 321 | 139 320 | pm2.61dane | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 322 | 68 70 112 | abssubge0d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( abs ‘ ( 𝑏 − 𝑎 ) ) = ( 𝑏 − 𝑎 ) ) |
| 323 | 322 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝑀 · ( 𝑏 − 𝑎 ) ) ) |
| 324 | 321 323 | breqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑎 ≤ 𝑏 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) |
| 325 | 29 38 40 58 324 | wlogle | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) |
| 326 | 325 | expcom | ⊢ ( ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑏 ) − ( 𝐹 ‘ 𝑎 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
| 327 | 14 20 326 | vtocl2ga | ⊢ ( ( 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) ) |
| 328 | 327 | ancoms | ⊢ ( ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) ) |
| 329 | 328 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑋 ) − ( 𝐹 ‘ 𝑌 ) ) ) ≤ ( 𝑀 · ( abs ‘ ( 𝑋 − 𝑌 ) ) ) ) |