This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of continuous functions. -cn-> analogue of cnmpt11f . (Contributed by Mario Carneiro, 3-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfmpt1f.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) | |
| cncfmpt1f.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) ) | ||
| Assertion | cncfmpt1f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmpt1f.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) | |
| 2 | cncfmpt1f.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 3 | cncff | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 6 | 5 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
| 7 | 4 6 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ ℂ ) |
| 8 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) | |
| 9 | cncff | ⊢ ( 𝐹 ∈ ( ℂ –cn→ ℂ ) → 𝐹 : ℂ ⟶ ℂ ) | |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
| 11 | 10 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℂ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 13 | 7 8 11 12 | fmptcof | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝐴 ) ) ) |
| 14 | 2 1 | cncfco | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 15 | 13 14 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝐴 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |