This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptres3.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| dvmptres3.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | ||
| dvmptres3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) | ||
| dvmptres3.y | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑋 ) = 𝑌 ) | ||
| dvmptres3.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| dvmptres3.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | ||
| dvmptres3.d | ⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | ||
| Assertion | dvmptres3 | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptres3.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | dvmptres3.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 3 | dvmptres3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) | |
| 4 | dvmptres3.y | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑋 ) = 𝑌 ) | |
| 5 | dvmptres3.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 6 | dvmptres3.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | |
| 7 | dvmptres3.d | ⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 8 | 5 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
| 9 | 7 | dmeqd | ⊢ ( 𝜑 → dom ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 10 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) | |
| 11 | 10 6 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 12 | 9 11 | eqtrd | ⊢ ( 𝜑 → dom ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) |
| 13 | 1 | dvres3a | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ∈ 𝐽 ∧ dom ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) ) → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) ) = ( ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ 𝑆 ) ) |
| 14 | 2 8 3 12 13 | syl22anc | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) ) = ( ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ 𝑆 ) ) |
| 15 | rescom | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) ↾ 𝑋 ) | |
| 16 | resres | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) ↾ 𝑋 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ ( 𝑆 ∩ 𝑋 ) ) | |
| 17 | 15 16 | eqtri | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ ( 𝑆 ∩ 𝑋 ) ) |
| 18 | 4 | reseq2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ ( 𝑆 ∩ 𝑋 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) |
| 19 | 17 18 | eqtrid | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ) |
| 20 | ffn | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) Fn 𝑋 ) | |
| 21 | fnresdm | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) Fn 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) | |
| 22 | 8 20 21 | 3syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 23 | 22 | reseq1d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) ) |
| 24 | inss2 | ⊢ ( 𝑆 ∩ 𝑋 ) ⊆ 𝑋 | |
| 25 | 4 24 | eqsstrrdi | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 26 | 25 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) |
| 27 | 19 23 26 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) |
| 28 | 27 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) ) |
| 29 | rescom | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑆 ) ↾ 𝑋 ) | |
| 30 | resres | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑆 ) ↾ 𝑋 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ ( 𝑆 ∩ 𝑋 ) ) | |
| 31 | 29 30 | eqtri | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ ( 𝑆 ∩ 𝑋 ) ) |
| 32 | 4 | reseq2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ ( 𝑆 ∩ 𝑋 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑌 ) ) |
| 33 | 31 32 | eqtrid | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑌 ) ) |
| 34 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 ) |
| 35 | 10 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) Fn 𝑋 ) |
| 36 | fnresdm | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) Fn 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 37 | 34 35 36 | 3syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 38 | 37 7 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) = ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) |
| 39 | 38 | reseq1d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑋 ) ↾ 𝑆 ) = ( ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ 𝑆 ) ) |
| 40 | 25 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑌 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |
| 41 | 33 39 40 | 3eqtr3d | ⊢ ( 𝜑 → ( ( ℂ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |
| 42 | 14 28 41 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |