This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine and cosine of _pi / 3 . (Contributed by Mario Carneiro, 21-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincos3rdpi | ⊢ ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | ⊢ π ∈ ℂ | |
| 2 | 2cn | ⊢ 2 ∈ ℂ | |
| 3 | 2ne0 | ⊢ 2 ≠ 0 | |
| 4 | 2 3 | reccli | ⊢ ( 1 / 2 ) ∈ ℂ |
| 5 | 3cn | ⊢ 3 ∈ ℂ | |
| 6 | 3ne0 | ⊢ 3 ≠ 0 | |
| 7 | 5 6 | reccli | ⊢ ( 1 / 3 ) ∈ ℂ |
| 8 | 1 4 7 | subdii | ⊢ ( π · ( ( 1 / 2 ) − ( 1 / 3 ) ) ) = ( ( π · ( 1 / 2 ) ) − ( π · ( 1 / 3 ) ) ) |
| 9 | halfthird | ⊢ ( ( 1 / 2 ) − ( 1 / 3 ) ) = ( 1 / 6 ) | |
| 10 | 9 | oveq2i | ⊢ ( π · ( ( 1 / 2 ) − ( 1 / 3 ) ) ) = ( π · ( 1 / 6 ) ) |
| 11 | 8 10 | eqtr3i | ⊢ ( ( π · ( 1 / 2 ) ) − ( π · ( 1 / 3 ) ) ) = ( π · ( 1 / 6 ) ) |
| 12 | 1 2 3 | divreci | ⊢ ( π / 2 ) = ( π · ( 1 / 2 ) ) |
| 13 | 1 5 6 | divreci | ⊢ ( π / 3 ) = ( π · ( 1 / 3 ) ) |
| 14 | 12 13 | oveq12i | ⊢ ( ( π / 2 ) − ( π / 3 ) ) = ( ( π · ( 1 / 2 ) ) − ( π · ( 1 / 3 ) ) ) |
| 15 | 6cn | ⊢ 6 ∈ ℂ | |
| 16 | 6nn | ⊢ 6 ∈ ℕ | |
| 17 | 16 | nnne0i | ⊢ 6 ≠ 0 |
| 18 | 1 15 17 | divreci | ⊢ ( π / 6 ) = ( π · ( 1 / 6 ) ) |
| 19 | 11 14 18 | 3eqtr4i | ⊢ ( ( π / 2 ) − ( π / 3 ) ) = ( π / 6 ) |
| 20 | 19 | fveq2i | ⊢ ( cos ‘ ( ( π / 2 ) − ( π / 3 ) ) ) = ( cos ‘ ( π / 6 ) ) |
| 21 | 1 5 6 | divcli | ⊢ ( π / 3 ) ∈ ℂ |
| 22 | coshalfpim | ⊢ ( ( π / 3 ) ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( π / 3 ) ) ) = ( sin ‘ ( π / 3 ) ) ) | |
| 23 | 21 22 | ax-mp | ⊢ ( cos ‘ ( ( π / 2 ) − ( π / 3 ) ) ) = ( sin ‘ ( π / 3 ) ) |
| 24 | sincos6thpi | ⊢ ( ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) ∧ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) ) | |
| 25 | 24 | simpri | ⊢ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) |
| 26 | 20 23 25 | 3eqtr3i | ⊢ ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) |
| 27 | 19 | fveq2i | ⊢ ( sin ‘ ( ( π / 2 ) − ( π / 3 ) ) ) = ( sin ‘ ( π / 6 ) ) |
| 28 | sinhalfpim | ⊢ ( ( π / 3 ) ∈ ℂ → ( sin ‘ ( ( π / 2 ) − ( π / 3 ) ) ) = ( cos ‘ ( π / 3 ) ) ) | |
| 29 | 21 28 | ax-mp | ⊢ ( sin ‘ ( ( π / 2 ) − ( π / 3 ) ) ) = ( cos ‘ ( π / 3 ) ) |
| 30 | 24 | simpli | ⊢ ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) |
| 31 | 27 29 30 | 3eqtr3i | ⊢ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) |
| 32 | 26 31 | pm3.2i | ⊢ ( ( sin ‘ ( π / 3 ) ) = ( ( √ ‘ 3 ) / 2 ) ∧ ( cos ‘ ( π / 3 ) ) = ( 1 / 2 ) ) |