This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007) (Proof shortened by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eff | ⊢ exp : ℂ ⟶ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ef | ⊢ exp = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) | |
| 2 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 3 | 0zd | ⊢ ( 𝑥 ∈ ℂ → 0 ∈ ℤ ) | |
| 4 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑥 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑥 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 5 | 4 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑥 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑥 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 7 | eftcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) | |
| 8 | 4 | efcllem | ⊢ ( 𝑥 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑥 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 9 | 2 3 6 7 8 | isumcl | ⊢ ( 𝑥 ∈ ℂ → Σ 𝑘 ∈ ℕ0 ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 10 | 1 9 | fmpti | ⊢ exp : ℂ ⟶ ℂ |