This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of the imaginary unit. (Contributed by NM, 26-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absi | ⊢ ( abs ‘ i ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | absval | ⊢ ( i ∈ ℂ → ( abs ‘ i ) = ( √ ‘ ( i · ( ∗ ‘ i ) ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( abs ‘ i ) = ( √ ‘ ( i · ( ∗ ‘ i ) ) ) |
| 4 | cji | ⊢ ( ∗ ‘ i ) = - i | |
| 5 | 4 | oveq2i | ⊢ ( i · ( ∗ ‘ i ) ) = ( i · - i ) |
| 6 | 1 1 | mulneg2i | ⊢ ( i · - i ) = - ( i · i ) |
| 7 | ixi | ⊢ ( i · i ) = - 1 | |
| 8 | 7 | negeqi | ⊢ - ( i · i ) = - - 1 |
| 9 | negneg1e1 | ⊢ - - 1 = 1 | |
| 10 | 8 9 | eqtri | ⊢ - ( i · i ) = 1 |
| 11 | 5 6 10 | 3eqtri | ⊢ ( i · ( ∗ ‘ i ) ) = 1 |
| 12 | 11 | fveq2i | ⊢ ( √ ‘ ( i · ( ∗ ‘ i ) ) ) = ( √ ‘ 1 ) |
| 13 | sqrt1 | ⊢ ( √ ‘ 1 ) = 1 | |
| 14 | 3 12 13 | 3eqtri | ⊢ ( abs ‘ i ) = 1 |