This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014) (Proof shortened by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvef | ⊢ ( ℂ D exp ) = exp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfcn | ⊢ ( ℂ D exp ) : dom ( ℂ D exp ) ⟶ ℂ | |
| 2 | dvbsss | ⊢ dom ( ℂ D exp ) ⊆ ℂ | |
| 3 | subcl | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑧 − 𝑥 ) ∈ ℂ ) | |
| 4 | 3 | ancoms | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑧 − 𝑥 ) ∈ ℂ ) |
| 5 | efadd | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑧 − 𝑥 ) ∈ ℂ ) → ( exp ‘ ( 𝑥 + ( 𝑧 − 𝑥 ) ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) | |
| 6 | 4 5 | syldan | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑥 + ( 𝑧 − 𝑥 ) ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) |
| 7 | pncan3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 + ( 𝑧 − 𝑥 ) ) = 𝑧 ) | |
| 8 | 7 | fveq2d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑥 + ( 𝑧 − 𝑥 ) ) ) = ( exp ‘ 𝑧 ) ) |
| 9 | 6 8 | eqtr3d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) = ( exp ‘ 𝑧 ) ) |
| 10 | 9 | mpteq2dva | ⊢ ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑧 ) ) ) |
| 11 | cnex | ⊢ ℂ ∈ V | |
| 12 | 11 | a1i | ⊢ ( 𝑥 ∈ ℂ → ℂ ∈ V ) |
| 13 | fvexd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ 𝑥 ) ∈ V ) | |
| 14 | fvexd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑧 − 𝑥 ) ) ∈ V ) | |
| 15 | fconstmpt | ⊢ ( ℂ × { ( exp ‘ 𝑥 ) } ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) | |
| 16 | 15 | a1i | ⊢ ( 𝑥 ∈ ℂ → ( ℂ × { ( exp ‘ 𝑥 ) } ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
| 17 | eqidd | ⊢ ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) | |
| 18 | 12 13 14 16 17 | offval2 | ⊢ ( 𝑥 ∈ ℂ → ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) |
| 19 | eff | ⊢ exp : ℂ ⟶ ℂ | |
| 20 | 19 | a1i | ⊢ ( 𝑥 ∈ ℂ → exp : ℂ ⟶ ℂ ) |
| 21 | 20 | feqmptd | ⊢ ( 𝑥 ∈ ℂ → exp = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑧 ) ) ) |
| 22 | 10 18 21 | 3eqtr4d | ⊢ ( 𝑥 ∈ ℂ → ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) = exp ) |
| 23 | 22 | oveq2d | ⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) = ( ℂ D exp ) ) |
| 24 | efcl | ⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ∈ ℂ ) | |
| 25 | fconstg | ⊢ ( ( exp ‘ 𝑥 ) ∈ ℂ → ( ℂ × { ( exp ‘ 𝑥 ) } ) : ℂ ⟶ { ( exp ‘ 𝑥 ) } ) | |
| 26 | 24 25 | syl | ⊢ ( 𝑥 ∈ ℂ → ( ℂ × { ( exp ‘ 𝑥 ) } ) : ℂ ⟶ { ( exp ‘ 𝑥 ) } ) |
| 27 | 24 | snssd | ⊢ ( 𝑥 ∈ ℂ → { ( exp ‘ 𝑥 ) } ⊆ ℂ ) |
| 28 | 26 27 | fssd | ⊢ ( 𝑥 ∈ ℂ → ( ℂ × { ( exp ‘ 𝑥 ) } ) : ℂ ⟶ ℂ ) |
| 29 | ssidd | ⊢ ( 𝑥 ∈ ℂ → ℂ ⊆ ℂ ) | |
| 30 | efcl | ⊢ ( ( 𝑧 − 𝑥 ) ∈ ℂ → ( exp ‘ ( 𝑧 − 𝑥 ) ) ∈ ℂ ) | |
| 31 | 4 30 | syl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑧 − 𝑥 ) ) ∈ ℂ ) |
| 32 | 31 | fmpttd | ⊢ ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) : ℂ ⟶ ℂ ) |
| 33 | c0ex | ⊢ 0 ∈ V | |
| 34 | 33 | snid | ⊢ 0 ∈ { 0 } |
| 35 | opelxpi | ⊢ ( ( 𝑥 ∈ ℂ ∧ 0 ∈ { 0 } ) → 〈 𝑥 , 0 〉 ∈ ( ℂ × { 0 } ) ) | |
| 36 | 34 35 | mpan2 | ⊢ ( 𝑥 ∈ ℂ → 〈 𝑥 , 0 〉 ∈ ( ℂ × { 0 } ) ) |
| 37 | dvconst | ⊢ ( ( exp ‘ 𝑥 ) ∈ ℂ → ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) = ( ℂ × { 0 } ) ) | |
| 38 | 24 37 | syl | ⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) = ( ℂ × { 0 } ) ) |
| 39 | 36 38 | eleqtrrd | ⊢ ( 𝑥 ∈ ℂ → 〈 𝑥 , 0 〉 ∈ ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) ) |
| 40 | df-br | ⊢ ( 𝑥 ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) 0 ↔ 〈 𝑥 , 0 〉 ∈ ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) ) | |
| 41 | 39 40 | sylibr | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) 0 ) |
| 42 | 20 4 | cofmpt | ⊢ ( 𝑥 ∈ ℂ → ( exp ∘ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) |
| 43 | 42 | oveq2d | ⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( exp ∘ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) = ( ℂ D ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) |
| 44 | 4 | fmpttd | ⊢ ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) : ℂ ⟶ ℂ ) |
| 45 | oveq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 − 𝑥 ) = ( 𝑥 − 𝑥 ) ) | |
| 46 | eqid | ⊢ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) | |
| 47 | ovex | ⊢ ( 𝑥 − 𝑥 ) ∈ V | |
| 48 | 45 46 47 | fvmpt | ⊢ ( 𝑥 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ‘ 𝑥 ) = ( 𝑥 − 𝑥 ) ) |
| 49 | subid | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 − 𝑥 ) = 0 ) | |
| 50 | 48 49 | eqtrd | ⊢ ( 𝑥 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ‘ 𝑥 ) = 0 ) |
| 51 | dveflem | ⊢ 0 ( ℂ D exp ) 1 | |
| 52 | 50 51 | eqbrtrdi | ⊢ ( 𝑥 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ‘ 𝑥 ) ( ℂ D exp ) 1 ) |
| 53 | 1ex | ⊢ 1 ∈ V | |
| 54 | 53 | snid | ⊢ 1 ∈ { 1 } |
| 55 | opelxpi | ⊢ ( ( 𝑥 ∈ ℂ ∧ 1 ∈ { 1 } ) → 〈 𝑥 , 1 〉 ∈ ( ℂ × { 1 } ) ) | |
| 56 | 54 55 | mpan2 | ⊢ ( 𝑥 ∈ ℂ → 〈 𝑥 , 1 〉 ∈ ( ℂ × { 1 } ) ) |
| 57 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 58 | 57 | a1i | ⊢ ( 𝑥 ∈ ℂ → ℂ ∈ { ℝ , ℂ } ) |
| 59 | simpr | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) | |
| 60 | 1cnd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 1 ∈ ℂ ) | |
| 61 | 58 | dvmptid | ⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( 𝑧 ∈ ℂ ↦ 𝑧 ) ) = ( 𝑧 ∈ ℂ ↦ 1 ) ) |
| 62 | simpl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 63 | 0cnd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 0 ∈ ℂ ) | |
| 64 | id | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) | |
| 65 | 58 64 | dvmptc | ⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( 𝑧 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑧 ∈ ℂ ↦ 0 ) ) |
| 66 | 58 59 60 61 62 63 65 | dvmptsub | ⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 1 − 0 ) ) ) |
| 67 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 68 | 67 | mpteq2i | ⊢ ( 𝑧 ∈ ℂ ↦ ( 1 − 0 ) ) = ( 𝑧 ∈ ℂ ↦ 1 ) |
| 69 | fconstmpt | ⊢ ( ℂ × { 1 } ) = ( 𝑧 ∈ ℂ ↦ 1 ) | |
| 70 | 68 69 | eqtr4i | ⊢ ( 𝑧 ∈ ℂ ↦ ( 1 − 0 ) ) = ( ℂ × { 1 } ) |
| 71 | 66 70 | eqtrdi | ⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) = ( ℂ × { 1 } ) ) |
| 72 | 56 71 | eleqtrrd | ⊢ ( 𝑥 ∈ ℂ → 〈 𝑥 , 1 〉 ∈ ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) |
| 73 | df-br | ⊢ ( 𝑥 ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) 1 ↔ 〈 𝑥 , 1 〉 ∈ ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) | |
| 74 | 72 73 | sylibr | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) 1 ) |
| 75 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 76 | 20 29 44 29 29 29 52 74 75 | dvcobr | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( exp ∘ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) ( 1 · 1 ) ) |
| 77 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 78 | 76 77 | breqtrdi | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( exp ∘ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) 1 ) |
| 79 | 43 78 | breqdi | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) 1 ) |
| 80 | 28 29 32 29 29 41 79 75 | dvmulbr | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) ( ( 0 · ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ) + ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) ) ) |
| 81 | 32 64 | ffvelcdmd | ⊢ ( 𝑥 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ∈ ℂ ) |
| 82 | 81 | mul02d | ⊢ ( 𝑥 ∈ ℂ → ( 0 · ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ) = 0 ) |
| 83 | fvex | ⊢ ( exp ‘ 𝑥 ) ∈ V | |
| 84 | 83 | fvconst2 | ⊢ ( 𝑥 ∈ ℂ → ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) |
| 85 | 84 | oveq2d | ⊢ ( 𝑥 ∈ ℂ → ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) = ( 1 · ( exp ‘ 𝑥 ) ) ) |
| 86 | 24 | mullidd | ⊢ ( 𝑥 ∈ ℂ → ( 1 · ( exp ‘ 𝑥 ) ) = ( exp ‘ 𝑥 ) ) |
| 87 | 85 86 | eqtrd | ⊢ ( 𝑥 ∈ ℂ → ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) = ( exp ‘ 𝑥 ) ) |
| 88 | 82 87 | oveq12d | ⊢ ( 𝑥 ∈ ℂ → ( ( 0 · ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ) + ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) ) = ( 0 + ( exp ‘ 𝑥 ) ) ) |
| 89 | 24 | addlidd | ⊢ ( 𝑥 ∈ ℂ → ( 0 + ( exp ‘ 𝑥 ) ) = ( exp ‘ 𝑥 ) ) |
| 90 | 88 89 | eqtrd | ⊢ ( 𝑥 ∈ ℂ → ( ( 0 · ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ) + ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) ) = ( exp ‘ 𝑥 ) ) |
| 91 | 80 90 | breqtrd | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) ( exp ‘ 𝑥 ) ) |
| 92 | 23 91 | breqdi | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D exp ) ( exp ‘ 𝑥 ) ) |
| 93 | vex | ⊢ 𝑥 ∈ V | |
| 94 | 93 83 | breldm | ⊢ ( 𝑥 ( ℂ D exp ) ( exp ‘ 𝑥 ) → 𝑥 ∈ dom ( ℂ D exp ) ) |
| 95 | 92 94 | syl | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ dom ( ℂ D exp ) ) |
| 96 | 95 | ssriv | ⊢ ℂ ⊆ dom ( ℂ D exp ) |
| 97 | 2 96 | eqssi | ⊢ dom ( ℂ D exp ) = ℂ |
| 98 | 97 | feq2i | ⊢ ( ( ℂ D exp ) : dom ( ℂ D exp ) ⟶ ℂ ↔ ( ℂ D exp ) : ℂ ⟶ ℂ ) |
| 99 | 1 98 | mpbi | ⊢ ( ℂ D exp ) : ℂ ⟶ ℂ |
| 100 | 99 | a1i | ⊢ ( ⊤ → ( ℂ D exp ) : ℂ ⟶ ℂ ) |
| 101 | 100 | feqmptd | ⊢ ( ⊤ → ( ℂ D exp ) = ( 𝑥 ∈ ℂ ↦ ( ( ℂ D exp ) ‘ 𝑥 ) ) ) |
| 102 | ffun | ⊢ ( ( ℂ D exp ) : dom ( ℂ D exp ) ⟶ ℂ → Fun ( ℂ D exp ) ) | |
| 103 | 1 102 | ax-mp | ⊢ Fun ( ℂ D exp ) |
| 104 | funbrfv | ⊢ ( Fun ( ℂ D exp ) → ( 𝑥 ( ℂ D exp ) ( exp ‘ 𝑥 ) → ( ( ℂ D exp ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) ) | |
| 105 | 103 92 104 | mpsyl | ⊢ ( 𝑥 ∈ ℂ → ( ( ℂ D exp ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) |
| 106 | 105 | mpteq2ia | ⊢ ( 𝑥 ∈ ℂ ↦ ( ( ℂ D exp ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) |
| 107 | 101 106 | eqtrdi | ⊢ ( ⊤ → ( ℂ D exp ) = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
| 108 | 19 | a1i | ⊢ ( ⊤ → exp : ℂ ⟶ ℂ ) |
| 109 | 108 | feqmptd | ⊢ ( ⊤ → exp = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
| 110 | 107 109 | eqtr4d | ⊢ ( ⊤ → ( ℂ D exp ) = exp ) |
| 111 | 110 | mptru | ⊢ ( ℂ D exp ) = exp |