This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of the exponential of an imaginary number is one. Equation 48 of Rudin p. 167. (Contributed by Jason Orendorff, 9-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absefi | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | efival | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( abs ‘ ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
| 5 | recoscl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ ) | |
| 6 | resincl | ⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) ∈ ℝ ) | |
| 7 | absreim | ⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ ( sin ‘ 𝐴 ) ∈ ℝ ) → ( abs ‘ ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = ( √ ‘ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) | |
| 8 | 5 6 7 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = ( √ ‘ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 9 | 5 | resqcld | ⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 10 | 9 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 11 | 6 | resqcld | ⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 13 | 10 12 | addcomd | ⊢ ( 𝐴 ∈ ℝ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 14 | sincossq | ⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) | |
| 15 | 1 14 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 16 | 13 15 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 17 | 16 | fveq2d | ⊢ ( 𝐴 ∈ ℝ → ( √ ‘ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) = ( √ ‘ 1 ) ) |
| 18 | sqrt1 | ⊢ ( √ ‘ 1 ) = 1 | |
| 19 | 17 18 | eqtrdi | ⊢ ( 𝐴 ∈ ℝ → ( √ ‘ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) = 1 ) |
| 20 | 8 19 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = 1 ) |
| 21 | 4 20 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = 1 ) |