This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The interior of a closed interval in the standard topology on RR is the corresponding open interval. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccntr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 2 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 3 | icc0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
| 5 | 4 | biimpar | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐴 [,] 𝐵 ) = ∅ ) |
| 6 | 5 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ∅ ) ) |
| 7 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 8 | ntr0 | ⊢ ( ( topGen ‘ ran (,) ) ∈ Top → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ∅ ) = ∅ ) | |
| 9 | 7 8 | ax-mp | ⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ∅ ) = ∅ |
| 10 | 0ss | ⊢ ∅ ⊆ ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) | |
| 11 | 9 10 | eqsstri | ⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ∅ ) ⊆ ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) |
| 12 | 6 11 | eqsstrdi | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ⊆ ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ) |
| 13 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 14 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 15 | 14 | ntrss2 | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 16 | 7 13 15 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 18 | 1 2 | anim12i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 19 | uncom | ⊢ ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) | |
| 20 | prunioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) | |
| 21 | 19 20 | eqtrid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 22 | 21 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 23 | 18 22 | sylan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 24 | 17 23 | sseqtrrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ⊆ ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ) |
| 25 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 26 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 27 | 12 24 25 26 | ltlecasei | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ⊆ ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ) |
| 28 | 14 | ntropn | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ( topGen ‘ ran (,) ) ) |
| 29 | 7 13 28 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ( topGen ‘ ran (,) ) ) |
| 30 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 31 | 30 | rexmet | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) |
| 32 | eqid | ⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) | |
| 33 | 30 32 | tgioo | ⊢ ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 34 | 33 | mopni2 | ⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝐴 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 35 | 31 34 | mp3an1 | ⊢ ( ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ( topGen ‘ ran (,) ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝐴 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 36 | 29 35 | sylan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝐴 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 37 | 26 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 38 | rphalfcl | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) | |
| 39 | 38 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 40 | 37 39 | ltsubrpd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 − ( 𝑥 / 2 ) ) < 𝐴 ) |
| 41 | 39 | rpred | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ ) |
| 42 | 37 41 | resubcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ℝ ) |
| 43 | 42 37 | ltnled | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝑥 / 2 ) ) < 𝐴 ↔ ¬ 𝐴 ≤ ( 𝐴 − ( 𝑥 / 2 ) ) ) ) |
| 44 | 40 43 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ¬ 𝐴 ≤ ( 𝐴 − ( 𝑥 / 2 ) ) ) |
| 45 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 46 | 45 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 47 | rphalflt | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) < 𝑥 ) | |
| 48 | 47 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) < 𝑥 ) |
| 49 | 41 46 37 48 | ltsub2dd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 − 𝑥 ) < ( 𝐴 − ( 𝑥 / 2 ) ) ) |
| 50 | 37 46 | readdcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 + 𝑥 ) ∈ ℝ ) |
| 51 | ltaddrp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → 𝐴 < ( 𝐴 + 𝑥 ) ) | |
| 52 | 37 51 | sylancom | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 < ( 𝐴 + 𝑥 ) ) |
| 53 | 42 37 50 40 52 | lttrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 − ( 𝑥 / 2 ) ) < ( 𝐴 + 𝑥 ) ) |
| 54 | 37 46 | resubcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 − 𝑥 ) ∈ ℝ ) |
| 55 | 54 | rexrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 − 𝑥 ) ∈ ℝ* ) |
| 56 | 50 | rexrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 + 𝑥 ) ∈ ℝ* ) |
| 57 | elioo2 | ⊢ ( ( ( 𝐴 − 𝑥 ) ∈ ℝ* ∧ ( 𝐴 + 𝑥 ) ∈ ℝ* ) → ( ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ( ( 𝐴 − 𝑥 ) (,) ( 𝐴 + 𝑥 ) ) ↔ ( ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ℝ ∧ ( 𝐴 − 𝑥 ) < ( 𝐴 − ( 𝑥 / 2 ) ) ∧ ( 𝐴 − ( 𝑥 / 2 ) ) < ( 𝐴 + 𝑥 ) ) ) ) | |
| 58 | 55 56 57 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ( ( 𝐴 − 𝑥 ) (,) ( 𝐴 + 𝑥 ) ) ↔ ( ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ℝ ∧ ( 𝐴 − 𝑥 ) < ( 𝐴 − ( 𝑥 / 2 ) ) ∧ ( 𝐴 − ( 𝑥 / 2 ) ) < ( 𝐴 + 𝑥 ) ) ) ) |
| 59 | 42 49 53 58 | mpbir3and | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ( ( 𝐴 − 𝑥 ) (,) ( 𝐴 + 𝑥 ) ) ) |
| 60 | 30 | bl2ioo | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) = ( ( 𝐴 − 𝑥 ) (,) ( 𝐴 + 𝑥 ) ) ) |
| 61 | 37 46 60 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) = ( ( 𝐴 − 𝑥 ) (,) ( 𝐴 + 𝑥 ) ) ) |
| 62 | 59 61 | eleqtrrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ( 𝐴 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ) |
| 63 | ssel | ⊢ ( ( 𝐴 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ( 𝐴 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) → ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 64 | 62 63 | syl5com | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐴 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 65 | 16 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 66 | 65 | sseld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 67 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ℝ ∧ 𝐴 ≤ ( 𝐴 − ( 𝑥 / 2 ) ) ∧ ( 𝐴 − ( 𝑥 / 2 ) ) ≤ 𝐵 ) ) ) | |
| 68 | simp2 | ⊢ ( ( ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ℝ ∧ 𝐴 ≤ ( 𝐴 − ( 𝑥 / 2 ) ) ∧ ( 𝐴 − ( 𝑥 / 2 ) ) ≤ 𝐵 ) → 𝐴 ≤ ( 𝐴 − ( 𝑥 / 2 ) ) ) | |
| 69 | 67 68 | biimtrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ( 𝐴 [,] 𝐵 ) → 𝐴 ≤ ( 𝐴 − ( 𝑥 / 2 ) ) ) ) |
| 70 | 69 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝑥 / 2 ) ) ∈ ( 𝐴 [,] 𝐵 ) → 𝐴 ≤ ( 𝐴 − ( 𝑥 / 2 ) ) ) ) |
| 71 | 64 66 70 | 3syld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐴 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ ( 𝐴 − ( 𝑥 / 2 ) ) ) ) |
| 72 | 44 71 | mtod | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ¬ ( 𝐴 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 73 | 72 | nrexdv | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) → ¬ ∃ 𝑥 ∈ ℝ+ ( 𝐴 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 74 | 36 73 | pm2.65da | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ¬ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 75 | 33 | mopni2 | ⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ( topGen ‘ ran (,) ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝐵 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 76 | 31 75 | mp3an1 | ⊢ ( ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ( topGen ‘ ran (,) ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝐵 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 77 | 29 76 | sylan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝐵 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 78 | 25 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 79 | 38 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 80 | 78 79 | ltaddrpd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐵 < ( 𝐵 + ( 𝑥 / 2 ) ) ) |
| 81 | 79 | rpred | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ ) |
| 82 | 78 81 | readdcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ℝ ) |
| 83 | 78 82 | ltnled | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 < ( 𝐵 + ( 𝑥 / 2 ) ) ↔ ¬ ( 𝐵 + ( 𝑥 / 2 ) ) ≤ 𝐵 ) ) |
| 84 | 80 83 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ¬ ( 𝐵 + ( 𝑥 / 2 ) ) ≤ 𝐵 ) |
| 85 | 45 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 86 | 78 85 | resubcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 − 𝑥 ) ∈ ℝ ) |
| 87 | ltsubrp | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 − 𝑥 ) < 𝐵 ) | |
| 88 | 78 87 | sylancom | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 − 𝑥 ) < 𝐵 ) |
| 89 | 86 78 82 88 80 | lttrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 − 𝑥 ) < ( 𝐵 + ( 𝑥 / 2 ) ) ) |
| 90 | 47 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) < 𝑥 ) |
| 91 | 81 85 78 90 | ltadd2dd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 + ( 𝑥 / 2 ) ) < ( 𝐵 + 𝑥 ) ) |
| 92 | 86 | rexrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 − 𝑥 ) ∈ ℝ* ) |
| 93 | 78 85 | readdcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 + 𝑥 ) ∈ ℝ ) |
| 94 | 93 | rexrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 + 𝑥 ) ∈ ℝ* ) |
| 95 | elioo2 | ⊢ ( ( ( 𝐵 − 𝑥 ) ∈ ℝ* ∧ ( 𝐵 + 𝑥 ) ∈ ℝ* ) → ( ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ( ( 𝐵 − 𝑥 ) (,) ( 𝐵 + 𝑥 ) ) ↔ ( ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ℝ ∧ ( 𝐵 − 𝑥 ) < ( 𝐵 + ( 𝑥 / 2 ) ) ∧ ( 𝐵 + ( 𝑥 / 2 ) ) < ( 𝐵 + 𝑥 ) ) ) ) | |
| 96 | 92 94 95 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ( ( 𝐵 − 𝑥 ) (,) ( 𝐵 + 𝑥 ) ) ↔ ( ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ℝ ∧ ( 𝐵 − 𝑥 ) < ( 𝐵 + ( 𝑥 / 2 ) ) ∧ ( 𝐵 + ( 𝑥 / 2 ) ) < ( 𝐵 + 𝑥 ) ) ) ) |
| 97 | 82 89 91 96 | mpbir3and | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ( ( 𝐵 − 𝑥 ) (,) ( 𝐵 + 𝑥 ) ) ) |
| 98 | 30 | bl2ioo | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐵 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) = ( ( 𝐵 − 𝑥 ) (,) ( 𝐵 + 𝑥 ) ) ) |
| 99 | 78 85 98 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) = ( ( 𝐵 − 𝑥 ) (,) ( 𝐵 + 𝑥 ) ) ) |
| 100 | 97 99 | eleqtrrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ( 𝐵 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ) |
| 101 | ssel | ⊢ ( ( 𝐵 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ( 𝐵 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) → ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 102 | 100 101 | syl5com | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐵 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) → ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 103 | 16 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 104 | 103 | sseld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) → ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 105 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ℝ ∧ 𝐴 ≤ ( 𝐵 + ( 𝑥 / 2 ) ) ∧ ( 𝐵 + ( 𝑥 / 2 ) ) ≤ 𝐵 ) ) ) | |
| 106 | simp3 | ⊢ ( ( ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ℝ ∧ 𝐴 ≤ ( 𝐵 + ( 𝑥 / 2 ) ) ∧ ( 𝐵 + ( 𝑥 / 2 ) ) ≤ 𝐵 ) → ( 𝐵 + ( 𝑥 / 2 ) ) ≤ 𝐵 ) | |
| 107 | 105 106 | biimtrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐵 + ( 𝑥 / 2 ) ) ≤ 𝐵 ) ) |
| 108 | 107 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐵 + ( 𝑥 / 2 ) ) ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐵 + ( 𝑥 / 2 ) ) ≤ 𝐵 ) ) |
| 109 | 102 104 108 | 3syld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐵 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) → ( 𝐵 + ( 𝑥 / 2 ) ) ≤ 𝐵 ) ) |
| 110 | 84 109 | mtod | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ+ ) → ¬ ( 𝐵 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 111 | 110 | nrexdv | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) → ¬ ∃ 𝑥 ∈ ℝ+ ( 𝐵 ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑥 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 112 | 77 111 | pm2.65da | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ¬ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 113 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ↔ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 114 | 113 | notbid | ⊢ ( 𝑥 = 𝐴 → ( ¬ 𝑥 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ↔ ¬ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 115 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ↔ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 116 | 115 | notbid | ⊢ ( 𝑥 = 𝐵 → ( ¬ 𝑥 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ↔ ¬ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 117 | 114 116 | ralprg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ¬ 𝑥 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ↔ ( ¬ 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 118 | 74 112 117 | mpbir2and | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ¬ 𝑥 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 119 | disjr | ⊢ ( ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ∩ { 𝐴 , 𝐵 } ) = ∅ ↔ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ¬ 𝑥 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) | |
| 120 | 118 119 | sylibr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ∩ { 𝐴 , 𝐵 } ) = ∅ ) |
| 121 | disjssun | ⊢ ( ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ∩ { 𝐴 , 𝐵 } ) = ∅ → ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ⊆ ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ↔ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐴 (,) 𝐵 ) ) ) | |
| 122 | 120 121 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ⊆ ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ↔ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐴 (,) 𝐵 ) ) ) |
| 123 | 27 122 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 124 | iooretop | ⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) | |
| 125 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 126 | 14 | ssntr | ⊢ ( ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) ∧ ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 127 | 124 125 126 | mpanr12 | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( 𝐴 (,) 𝐵 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 128 | 7 13 127 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,) 𝐵 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 129 | 123 128 | eqssd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |