This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of pige3 . This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter 2pi . We translate this to algebra by looking at the function e ^ (i x ) as x goes from 0 to pi / 3 ; it moves at unit speed and travels distance 1 , hence 1 <_ _pi / 3 . (Contributed by Mario Carneiro, 21-May-2016) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pige3ALT | |- 3 <_ _pi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn | |- 3 e. CC |
|
| 2 | 1 | mullidi | |- ( 1 x. 3 ) = 3 |
| 3 | tru | |- T. |
|
| 4 | 0xr | |- 0 e. RR* |
|
| 5 | pirp | |- _pi e. RR+ |
|
| 6 | 3rp | |- 3 e. RR+ |
|
| 7 | rpdivcl | |- ( ( _pi e. RR+ /\ 3 e. RR+ ) -> ( _pi / 3 ) e. RR+ ) |
|
| 8 | 5 6 7 | mp2an | |- ( _pi / 3 ) e. RR+ |
| 9 | rpxr | |- ( ( _pi / 3 ) e. RR+ -> ( _pi / 3 ) e. RR* ) |
|
| 10 | 8 9 | ax-mp | |- ( _pi / 3 ) e. RR* |
| 11 | rpge0 | |- ( ( _pi / 3 ) e. RR+ -> 0 <_ ( _pi / 3 ) ) |
|
| 12 | 8 11 | ax-mp | |- 0 <_ ( _pi / 3 ) |
| 13 | lbicc2 | |- ( ( 0 e. RR* /\ ( _pi / 3 ) e. RR* /\ 0 <_ ( _pi / 3 ) ) -> 0 e. ( 0 [,] ( _pi / 3 ) ) ) |
|
| 14 | 4 10 12 13 | mp3an | |- 0 e. ( 0 [,] ( _pi / 3 ) ) |
| 15 | ubicc2 | |- ( ( 0 e. RR* /\ ( _pi / 3 ) e. RR* /\ 0 <_ ( _pi / 3 ) ) -> ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) ) |
|
| 16 | 4 10 12 15 | mp3an | |- ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) |
| 17 | 14 16 | pm3.2i | |- ( 0 e. ( 0 [,] ( _pi / 3 ) ) /\ ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) ) |
| 18 | 0re | |- 0 e. RR |
|
| 19 | 18 | a1i | |- ( T. -> 0 e. RR ) |
| 20 | pire | |- _pi e. RR |
|
| 21 | 3re | |- 3 e. RR |
|
| 22 | 3ne0 | |- 3 =/= 0 |
|
| 23 | 20 21 22 | redivcli | |- ( _pi / 3 ) e. RR |
| 24 | 23 | a1i | |- ( T. -> ( _pi / 3 ) e. RR ) |
| 25 | efcn | |- exp e. ( CC -cn-> CC ) |
|
| 26 | 25 | a1i | |- ( T. -> exp e. ( CC -cn-> CC ) ) |
| 27 | iccssre | |- ( ( 0 e. RR /\ ( _pi / 3 ) e. RR ) -> ( 0 [,] ( _pi / 3 ) ) C_ RR ) |
|
| 28 | 18 23 27 | mp2an | |- ( 0 [,] ( _pi / 3 ) ) C_ RR |
| 29 | ax-resscn | |- RR C_ CC |
|
| 30 | 28 29 | sstri | |- ( 0 [,] ( _pi / 3 ) ) C_ CC |
| 31 | resmpt | |- ( ( 0 [,] ( _pi / 3 ) ) C_ CC -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) = ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( _i x. x ) ) ) |
|
| 32 | 30 31 | mp1i | |- ( T. -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) = ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( _i x. x ) ) ) |
| 33 | ssidd | |- ( T. -> CC C_ CC ) |
|
| 34 | ax-icn | |- _i e. CC |
|
| 35 | simpr | |- ( ( T. /\ x e. CC ) -> x e. CC ) |
|
| 36 | mulcl | |- ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC ) |
|
| 37 | 34 35 36 | sylancr | |- ( ( T. /\ x e. CC ) -> ( _i x. x ) e. CC ) |
| 38 | 37 | fmpttd | |- ( T. -> ( x e. CC |-> ( _i x. x ) ) : CC --> CC ) |
| 39 | cnelprrecn | |- CC e. { RR , CC } |
|
| 40 | 39 | a1i | |- ( T. -> CC e. { RR , CC } ) |
| 41 | ax-1cn | |- 1 e. CC |
|
| 42 | 41 | a1i | |- ( ( T. /\ x e. CC ) -> 1 e. CC ) |
| 43 | 40 | dvmptid | |- ( T. -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) |
| 44 | 34 | a1i | |- ( T. -> _i e. CC ) |
| 45 | 40 35 42 43 44 | dvmptcmul | |- ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> ( _i x. 1 ) ) ) |
| 46 | 34 | mulridi | |- ( _i x. 1 ) = _i |
| 47 | 46 | mpteq2i | |- ( x e. CC |-> ( _i x. 1 ) ) = ( x e. CC |-> _i ) |
| 48 | 45 47 | eqtrdi | |- ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> _i ) ) |
| 49 | 48 | dmeqd | |- ( T. -> dom ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = dom ( x e. CC |-> _i ) ) |
| 50 | 34 | elexi | |- _i e. _V |
| 51 | eqid | |- ( x e. CC |-> _i ) = ( x e. CC |-> _i ) |
|
| 52 | 50 51 | dmmpti | |- dom ( x e. CC |-> _i ) = CC |
| 53 | 49 52 | eqtrdi | |- ( T. -> dom ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = CC ) |
| 54 | dvcn | |- ( ( ( CC C_ CC /\ ( x e. CC |-> ( _i x. x ) ) : CC --> CC /\ CC C_ CC ) /\ dom ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = CC ) -> ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) ) |
|
| 55 | 33 38 33 53 54 | syl31anc | |- ( T. -> ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) ) |
| 56 | rescncf | |- ( ( 0 [,] ( _pi / 3 ) ) C_ CC -> ( ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) ) ) |
|
| 57 | 30 55 56 | mpsyl | |- ( T. -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) ) |
| 58 | 32 57 | eqeltrrd | |- ( T. -> ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( _i x. x ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) ) |
| 59 | 26 58 | cncfmpt1f | |- ( T. -> ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) ) |
| 60 | reelprrecn | |- RR e. { RR , CC } |
|
| 61 | 60 | a1i | |- ( T. -> RR e. { RR , CC } ) |
| 62 | recn | |- ( x e. RR -> x e. CC ) |
|
| 63 | efcl | |- ( ( _i x. x ) e. CC -> ( exp ` ( _i x. x ) ) e. CC ) |
|
| 64 | 37 63 | syl | |- ( ( T. /\ x e. CC ) -> ( exp ` ( _i x. x ) ) e. CC ) |
| 65 | 62 64 | sylan2 | |- ( ( T. /\ x e. RR ) -> ( exp ` ( _i x. x ) ) e. CC ) |
| 66 | mulcl | |- ( ( ( exp ` ( _i x. x ) ) e. CC /\ _i e. CC ) -> ( ( exp ` ( _i x. x ) ) x. _i ) e. CC ) |
|
| 67 | 64 34 66 | sylancl | |- ( ( T. /\ x e. CC ) -> ( ( exp ` ( _i x. x ) ) x. _i ) e. CC ) |
| 68 | 62 67 | sylan2 | |- ( ( T. /\ x e. RR ) -> ( ( exp ` ( _i x. x ) ) x. _i ) e. CC ) |
| 69 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 70 | 69 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 71 | toponmax | |- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
|
| 72 | 70 71 | mp1i | |- ( T. -> CC e. ( TopOpen ` CCfld ) ) |
| 73 | 29 | a1i | |- ( T. -> RR C_ CC ) |
| 74 | dfss2 | |- ( RR C_ CC <-> ( RR i^i CC ) = RR ) |
|
| 75 | 73 74 | sylib | |- ( T. -> ( RR i^i CC ) = RR ) |
| 76 | 34 | a1i | |- ( ( T. /\ x e. CC ) -> _i e. CC ) |
| 77 | efcl | |- ( y e. CC -> ( exp ` y ) e. CC ) |
|
| 78 | 77 | adantl | |- ( ( T. /\ y e. CC ) -> ( exp ` y ) e. CC ) |
| 79 | dvef | |- ( CC _D exp ) = exp |
|
| 80 | eff | |- exp : CC --> CC |
|
| 81 | 80 | a1i | |- ( T. -> exp : CC --> CC ) |
| 82 | 81 | feqmptd | |- ( T. -> exp = ( y e. CC |-> ( exp ` y ) ) ) |
| 83 | 82 | oveq2d | |- ( T. -> ( CC _D exp ) = ( CC _D ( y e. CC |-> ( exp ` y ) ) ) ) |
| 84 | 79 83 82 | 3eqtr3a | |- ( T. -> ( CC _D ( y e. CC |-> ( exp ` y ) ) ) = ( y e. CC |-> ( exp ` y ) ) ) |
| 85 | fveq2 | |- ( y = ( _i x. x ) -> ( exp ` y ) = ( exp ` ( _i x. x ) ) ) |
|
| 86 | 40 40 37 76 78 78 48 84 85 85 | dvmptco | |- ( T. -> ( CC _D ( x e. CC |-> ( exp ` ( _i x. x ) ) ) ) = ( x e. CC |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ) |
| 87 | 69 61 72 75 64 67 86 | dvmptres3 | |- ( T. -> ( RR _D ( x e. RR |-> ( exp ` ( _i x. x ) ) ) ) = ( x e. RR |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ) |
| 88 | 28 | a1i | |- ( T. -> ( 0 [,] ( _pi / 3 ) ) C_ RR ) |
| 89 | 69 | tgioo2 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 90 | iccntr | |- ( ( 0 e. RR /\ ( _pi / 3 ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] ( _pi / 3 ) ) ) = ( 0 (,) ( _pi / 3 ) ) ) |
|
| 91 | 18 24 90 | sylancr | |- ( T. -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] ( _pi / 3 ) ) ) = ( 0 (,) ( _pi / 3 ) ) ) |
| 92 | 61 65 68 87 88 89 69 91 | dvmptres2 | |- ( T. -> ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) = ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ) |
| 93 | 92 | dmeqd | |- ( T. -> dom ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) = dom ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ) |
| 94 | ovex | |- ( ( exp ` ( _i x. x ) ) x. _i ) e. _V |
|
| 95 | eqid | |- ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) = ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) |
|
| 96 | 94 95 | dmmpti | |- dom ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) = ( 0 (,) ( _pi / 3 ) ) |
| 97 | 93 96 | eqtrdi | |- ( T. -> dom ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) = ( 0 (,) ( _pi / 3 ) ) ) |
| 98 | 1re | |- 1 e. RR |
|
| 99 | 98 | a1i | |- ( T. -> 1 e. RR ) |
| 100 | 92 | fveq1d | |- ( T. -> ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) = ( ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ` y ) ) |
| 101 | oveq2 | |- ( x = y -> ( _i x. x ) = ( _i x. y ) ) |
|
| 102 | 101 | fveq2d | |- ( x = y -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. y ) ) ) |
| 103 | 102 | oveq1d | |- ( x = y -> ( ( exp ` ( _i x. x ) ) x. _i ) = ( ( exp ` ( _i x. y ) ) x. _i ) ) |
| 104 | 103 95 94 | fvmpt3i | |- ( y e. ( 0 (,) ( _pi / 3 ) ) -> ( ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ` y ) = ( ( exp ` ( _i x. y ) ) x. _i ) ) |
| 105 | 100 104 | sylan9eq | |- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) = ( ( exp ` ( _i x. y ) ) x. _i ) ) |
| 106 | 105 | fveq2d | |- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) ) = ( abs ` ( ( exp ` ( _i x. y ) ) x. _i ) ) ) |
| 107 | ioossre | |- ( 0 (,) ( _pi / 3 ) ) C_ RR |
|
| 108 | 107 | a1i | |- ( T. -> ( 0 (,) ( _pi / 3 ) ) C_ RR ) |
| 109 | 108 | sselda | |- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> y e. RR ) |
| 110 | 109 | recnd | |- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> y e. CC ) |
| 111 | mulcl | |- ( ( _i e. CC /\ y e. CC ) -> ( _i x. y ) e. CC ) |
|
| 112 | 34 110 111 | sylancr | |- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( _i x. y ) e. CC ) |
| 113 | efcl | |- ( ( _i x. y ) e. CC -> ( exp ` ( _i x. y ) ) e. CC ) |
|
| 114 | 112 113 | syl | |- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( exp ` ( _i x. y ) ) e. CC ) |
| 115 | absmul | |- ( ( ( exp ` ( _i x. y ) ) e. CC /\ _i e. CC ) -> ( abs ` ( ( exp ` ( _i x. y ) ) x. _i ) ) = ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) ) |
|
| 116 | 114 34 115 | sylancl | |- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( exp ` ( _i x. y ) ) x. _i ) ) = ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) ) |
| 117 | absefi | |- ( y e. RR -> ( abs ` ( exp ` ( _i x. y ) ) ) = 1 ) |
|
| 118 | 109 117 | syl | |- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( exp ` ( _i x. y ) ) ) = 1 ) |
| 119 | absi | |- ( abs ` _i ) = 1 |
|
| 120 | 119 | a1i | |- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` _i ) = 1 ) |
| 121 | 118 120 | oveq12d | |- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) = ( 1 x. 1 ) ) |
| 122 | 41 | mulridi | |- ( 1 x. 1 ) = 1 |
| 123 | 121 122 | eqtrdi | |- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) = 1 ) |
| 124 | 106 116 123 | 3eqtrd | |- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) ) = 1 ) |
| 125 | 1le1 | |- 1 <_ 1 |
|
| 126 | 124 125 | eqbrtrdi | |- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) ) <_ 1 ) |
| 127 | 19 24 59 97 99 126 | dvlip | |- ( ( T. /\ ( 0 e. ( 0 [,] ( _pi / 3 ) ) /\ ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) ) ) -> ( abs ` ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) ) <_ ( 1 x. ( abs ` ( 0 - ( _pi / 3 ) ) ) ) ) |
| 128 | 3 17 127 | mp2an | |- ( abs ` ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) ) <_ ( 1 x. ( abs ` ( 0 - ( _pi / 3 ) ) ) ) |
| 129 | oveq2 | |- ( x = 0 -> ( _i x. x ) = ( _i x. 0 ) ) |
|
| 130 | it0e0 | |- ( _i x. 0 ) = 0 |
|
| 131 | 129 130 | eqtrdi | |- ( x = 0 -> ( _i x. x ) = 0 ) |
| 132 | 131 | fveq2d | |- ( x = 0 -> ( exp ` ( _i x. x ) ) = ( exp ` 0 ) ) |
| 133 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 134 | 132 133 | eqtrdi | |- ( x = 0 -> ( exp ` ( _i x. x ) ) = 1 ) |
| 135 | eqid | |- ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) = ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) |
|
| 136 | fvex | |- ( exp ` ( _i x. x ) ) e. _V |
|
| 137 | 134 135 136 | fvmpt3i | |- ( 0 e. ( 0 [,] ( _pi / 3 ) ) -> ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) = 1 ) |
| 138 | 14 137 | ax-mp | |- ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) = 1 |
| 139 | oveq2 | |- ( x = ( _pi / 3 ) -> ( _i x. x ) = ( _i x. ( _pi / 3 ) ) ) |
|
| 140 | 139 | fveq2d | |- ( x = ( _pi / 3 ) -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. ( _pi / 3 ) ) ) ) |
| 141 | 140 135 136 | fvmpt3i | |- ( ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) -> ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) = ( exp ` ( _i x. ( _pi / 3 ) ) ) ) |
| 142 | 16 141 | ax-mp | |- ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) = ( exp ` ( _i x. ( _pi / 3 ) ) ) |
| 143 | 138 142 | oveq12i | |- ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) = ( 1 - ( exp ` ( _i x. ( _pi / 3 ) ) ) ) |
| 144 | 23 | recni | |- ( _pi / 3 ) e. CC |
| 145 | 34 144 | mulcli | |- ( _i x. ( _pi / 3 ) ) e. CC |
| 146 | efcl | |- ( ( _i x. ( _pi / 3 ) ) e. CC -> ( exp ` ( _i x. ( _pi / 3 ) ) ) e. CC ) |
|
| 147 | 145 146 | ax-mp | |- ( exp ` ( _i x. ( _pi / 3 ) ) ) e. CC |
| 148 | negicn | |- -u _i e. CC |
|
| 149 | 148 144 | mulcli | |- ( -u _i x. ( _pi / 3 ) ) e. CC |
| 150 | efcl | |- ( ( -u _i x. ( _pi / 3 ) ) e. CC -> ( exp ` ( -u _i x. ( _pi / 3 ) ) ) e. CC ) |
|
| 151 | 149 150 | ax-mp | |- ( exp ` ( -u _i x. ( _pi / 3 ) ) ) e. CC |
| 152 | cosval | |- ( ( _pi / 3 ) e. CC -> ( cos ` ( _pi / 3 ) ) = ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) ) |
|
| 153 | 144 152 | ax-mp | |- ( cos ` ( _pi / 3 ) ) = ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) |
| 154 | sincos3rdpi | |- ( ( sin ` ( _pi / 3 ) ) = ( ( sqrt ` 3 ) / 2 ) /\ ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) ) |
|
| 155 | 154 | simpri | |- ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) |
| 156 | 153 155 | eqtr3i | |- ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) = ( 1 / 2 ) |
| 157 | 147 151 | addcli | |- ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) e. CC |
| 158 | 2cn | |- 2 e. CC |
|
| 159 | 2ne0 | |- 2 =/= 0 |
|
| 160 | 157 41 158 159 | div11i | |- ( ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) = ( 1 / 2 ) <-> ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) = 1 ) |
| 161 | 156 160 | mpbi | |- ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) = 1 |
| 162 | 41 147 151 161 | subaddrii | |- ( 1 - ( exp ` ( _i x. ( _pi / 3 ) ) ) ) = ( exp ` ( -u _i x. ( _pi / 3 ) ) ) |
| 163 | mulneg12 | |- ( ( _i e. CC /\ ( _pi / 3 ) e. CC ) -> ( -u _i x. ( _pi / 3 ) ) = ( _i x. -u ( _pi / 3 ) ) ) |
|
| 164 | 34 144 163 | mp2an | |- ( -u _i x. ( _pi / 3 ) ) = ( _i x. -u ( _pi / 3 ) ) |
| 165 | 164 | fveq2i | |- ( exp ` ( -u _i x. ( _pi / 3 ) ) ) = ( exp ` ( _i x. -u ( _pi / 3 ) ) ) |
| 166 | 143 162 165 | 3eqtri | |- ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) = ( exp ` ( _i x. -u ( _pi / 3 ) ) ) |
| 167 | 166 | fveq2i | |- ( abs ` ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) ) = ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) |
| 168 | 144 | absnegi | |- ( abs ` -u ( _pi / 3 ) ) = ( abs ` ( _pi / 3 ) ) |
| 169 | df-neg | |- -u ( _pi / 3 ) = ( 0 - ( _pi / 3 ) ) |
|
| 170 | 169 | fveq2i | |- ( abs ` -u ( _pi / 3 ) ) = ( abs ` ( 0 - ( _pi / 3 ) ) ) |
| 171 | 168 170 | eqtr3i | |- ( abs ` ( _pi / 3 ) ) = ( abs ` ( 0 - ( _pi / 3 ) ) ) |
| 172 | rprege0 | |- ( ( _pi / 3 ) e. RR+ -> ( ( _pi / 3 ) e. RR /\ 0 <_ ( _pi / 3 ) ) ) |
|
| 173 | absid | |- ( ( ( _pi / 3 ) e. RR /\ 0 <_ ( _pi / 3 ) ) -> ( abs ` ( _pi / 3 ) ) = ( _pi / 3 ) ) |
|
| 174 | 8 172 173 | mp2b | |- ( abs ` ( _pi / 3 ) ) = ( _pi / 3 ) |
| 175 | 171 174 | eqtr3i | |- ( abs ` ( 0 - ( _pi / 3 ) ) ) = ( _pi / 3 ) |
| 176 | 175 | oveq2i | |- ( 1 x. ( abs ` ( 0 - ( _pi / 3 ) ) ) ) = ( 1 x. ( _pi / 3 ) ) |
| 177 | 128 167 176 | 3brtr3i | |- ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) <_ ( 1 x. ( _pi / 3 ) ) |
| 178 | 23 | renegcli | |- -u ( _pi / 3 ) e. RR |
| 179 | absefi | |- ( -u ( _pi / 3 ) e. RR -> ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) = 1 ) |
|
| 180 | 178 179 | ax-mp | |- ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) = 1 |
| 181 | 144 | mullidi | |- ( 1 x. ( _pi / 3 ) ) = ( _pi / 3 ) |
| 182 | 177 180 181 | 3brtr3i | |- 1 <_ ( _pi / 3 ) |
| 183 | 3pos | |- 0 < 3 |
|
| 184 | 21 183 | pm3.2i | |- ( 3 e. RR /\ 0 < 3 ) |
| 185 | lemuldiv | |- ( ( 1 e. RR /\ _pi e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( 1 x. 3 ) <_ _pi <-> 1 <_ ( _pi / 3 ) ) ) |
|
| 186 | 98 20 184 185 | mp3an | |- ( ( 1 x. 3 ) <_ _pi <-> 1 <_ ( _pi / 3 ) ) |
| 187 | 182 186 | mpbir | |- ( 1 x. 3 ) <_ _pi |
| 188 | 2 187 | eqbrtrri | |- 3 <_ _pi |