This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | ||
| dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | ||
| dvmptres2.z | ⊢ ( 𝜑 → 𝑍 ⊆ 𝑋 ) | ||
| dvmptres2.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) | ||
| dvmptres2.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| dvmptres2.i | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑍 ) = 𝑌 ) | ||
| Assertion | dvmptres2 | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 3 | dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | |
| 4 | dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 5 | dvmptres2.z | ⊢ ( 𝜑 → 𝑍 ⊆ 𝑋 ) | |
| 6 | dvmptres2.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) | |
| 7 | dvmptres2.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 8 | dvmptres2.i | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑍 ) = 𝑌 ) | |
| 9 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 11 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
| 12 | 4 | dmeqd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 13 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 ) |
| 14 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 16 | 12 15 | eqtrd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) |
| 17 | dvbsss | ⊢ dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ⊆ 𝑆 | |
| 18 | 16 17 | eqsstrrdi | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 19 | 5 18 | sstrd | ⊢ ( 𝜑 → 𝑍 ⊆ 𝑆 ) |
| 20 | 7 6 | dvres | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ⊆ 𝑆 ∧ 𝑍 ⊆ 𝑆 ) ) → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑍 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) ) |
| 21 | 10 11 18 19 20 | syl22anc | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑍 ) ) = ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) ) |
| 22 | 5 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑍 ) = ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ) |
| 23 | 22 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑍 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ) ) |
| 24 | 4 | reseq1d | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) ) |
| 25 | 8 | reseq2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑌 ) ) |
| 26 | 7 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 27 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 28 | 26 10 27 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 29 | 6 28 | eqeltrid | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑆 ) ) |
| 30 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝐽 ∈ Top ) | |
| 31 | 29 30 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 32 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝐽 ) | |
| 33 | 29 32 | syl | ⊢ ( 𝜑 → 𝑆 = ∪ 𝐽 ) |
| 34 | 19 33 | sseqtrd | ⊢ ( 𝜑 → 𝑍 ⊆ ∪ 𝐽 ) |
| 35 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 36 | 35 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑍 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ⊆ 𝑍 ) |
| 37 | 31 34 36 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ⊆ 𝑍 ) |
| 38 | 8 37 | eqsstrrd | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑍 ) |
| 39 | 38 5 | sstrd | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 40 | 39 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↾ 𝑌 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |
| 41 | 24 25 40 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑍 ) ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |
| 42 | 21 23 41 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑌 ↦ 𝐵 ) ) |