This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007) (Revised by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efcn | ⊢ exp ∈ ( ℂ –cn→ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ ℂ ⊆ ℂ | |
| 2 | eff | ⊢ exp : ℂ ⟶ ℂ | |
| 3 | dvef | ⊢ ( ℂ D exp ) = exp | |
| 4 | 3 | feq1i | ⊢ ( ( ℂ D exp ) : ℂ ⟶ ℂ ↔ exp : ℂ ⟶ ℂ ) |
| 5 | 2 4 | mpbir | ⊢ ( ℂ D exp ) : ℂ ⟶ ℂ |
| 6 | 5 | fdmi | ⊢ dom ( ℂ D exp ) = ℂ |
| 7 | dvcn | ⊢ ( ( ( ℂ ⊆ ℂ ∧ exp : ℂ ⟶ ℂ ∧ ℂ ⊆ ℂ ) ∧ dom ( ℂ D exp ) = ℂ ) → exp ∈ ( ℂ –cn→ ℂ ) ) | |
| 8 | 6 7 | mpan2 | ⊢ ( ( ℂ ⊆ ℂ ∧ exp : ℂ ⟶ ℂ ∧ ℂ ⊆ ℂ ) → exp ∈ ( ℂ –cn→ ℂ ) ) |
| 9 | 1 2 1 8 | mp3an | ⊢ exp ∈ ( ℂ –cn→ ℂ ) |