This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem rpxr

Description: A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion rpxr ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 rpre ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ )
2 1 rexrd ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ* )