This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpdivcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 2 | rprene0 | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) | |
| 3 | redivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 4 | 3 | 3expb | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 5 | 1 2 4 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 6 | elrp | ⊢ ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) | |
| 7 | elrp | ⊢ ( 𝐵 ∈ ℝ+ ↔ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) | |
| 8 | divgt0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 / 𝐵 ) ) | |
| 9 | 6 7 8 | syl2anb | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → 0 < ( 𝐴 / 𝐵 ) ) |
| 10 | elrp | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ+ ↔ ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 / 𝐵 ) ) ) | |
| 11 | 5 9 10 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ+ ) |