This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value distributes over multiplication. Proposition 10-3.7(f) of Gleason p. 133. (Contributed by NM, 11-Oct-1999) (Revised by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) ) | |
| 2 | 1 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · ( ∗ ‘ ( 𝐴 · 𝐵 ) ) ) = ( ( 𝐴 · 𝐵 ) · ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) ) ) |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 5 | 3 | cjcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 6 | 4 | cjcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
| 7 | 3 4 5 6 | mul4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) |
| 8 | 2 7 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · ( ∗ ‘ ( 𝐴 · 𝐵 ) ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( √ ‘ ( ( 𝐴 · 𝐵 ) · ( ∗ ‘ ( 𝐴 · 𝐵 ) ) ) ) = ( √ ‘ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) ) |
| 10 | cjmulrcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) | |
| 11 | cjmulge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) | |
| 12 | 10 11 | jca | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 13 | cjmulrcl | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ∈ ℝ ) | |
| 14 | cjmulge0 | ⊢ ( 𝐵 ∈ ℂ → 0 ≤ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) | |
| 15 | 13 14 | jca | ⊢ ( 𝐵 ∈ ℂ → ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) |
| 16 | sqrtmul | ⊢ ( ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ∧ ( ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) → ( √ ‘ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) ) | |
| 17 | 12 15 16 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( √ ‘ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) ) |
| 18 | 9 17 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( √ ‘ ( ( 𝐴 · 𝐵 ) · ( ∗ ‘ ( 𝐴 · 𝐵 ) ) ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) ) |
| 19 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) | |
| 20 | absval | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ℂ → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( √ ‘ ( ( 𝐴 · 𝐵 ) · ( ∗ ‘ ( 𝐴 · 𝐵 ) ) ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( √ ‘ ( ( 𝐴 · 𝐵 ) · ( ∗ ‘ ( 𝐴 · 𝐵 ) ) ) ) ) |
| 22 | absval | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) | |
| 23 | absval | ⊢ ( 𝐵 ∈ ℂ → ( abs ‘ 𝐵 ) = ( √ ‘ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) | |
| 24 | 22 23 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 · ( ∗ ‘ 𝐵 ) ) ) ) ) |
| 25 | 18 21 24 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 · 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐵 ) ) ) |