This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the cosine function. (Contributed by NM, 14-Mar-2005) (Revised by Mario Carneiro, 10-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosval | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( i · 𝑥 ) = ( i · 𝐴 ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( exp ‘ ( i · 𝑥 ) ) = ( exp ‘ ( i · 𝐴 ) ) ) |
| 3 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( - i · 𝑥 ) = ( - i · 𝐴 ) ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( exp ‘ ( - i · 𝑥 ) ) = ( exp ‘ ( - i · 𝐴 ) ) ) |
| 5 | 2 4 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( ( exp ‘ ( i · 𝑥 ) ) + ( exp ‘ ( - i · 𝑥 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) ) |
| 6 | 5 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ( exp ‘ ( i · 𝑥 ) ) + ( exp ‘ ( - i · 𝑥 ) ) ) / 2 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) ) |
| 7 | df-cos | ⊢ cos = ( 𝑥 ∈ ℂ ↦ ( ( ( exp ‘ ( i · 𝑥 ) ) + ( exp ‘ ( - i · 𝑥 ) ) ) / 2 ) ) | |
| 8 | ovex | ⊢ ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) ∈ V | |
| 9 | 6 7 8 | fvmpt | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) ) |