This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | renegcl.1 | ⊢ 𝐴 ∈ ℝ | |
| Assertion | renegcli | ⊢ - 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | ax-rnegex | ⊢ ( 𝐴 ∈ ℝ → ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) | |
| 3 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 4 | df-neg | ⊢ - 𝐴 = ( 0 − 𝐴 ) | |
| 5 | 4 | eqeq1i | ⊢ ( - 𝐴 = 𝑥 ↔ ( 0 − 𝐴 ) = 𝑥 ) |
| 6 | 0cn | ⊢ 0 ∈ ℂ | |
| 7 | 1 | recni | ⊢ 𝐴 ∈ ℂ |
| 8 | subadd | ⊢ ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 0 − 𝐴 ) = 𝑥 ↔ ( 𝐴 + 𝑥 ) = 0 ) ) | |
| 9 | 6 7 8 | mp3an12 | ⊢ ( 𝑥 ∈ ℂ → ( ( 0 − 𝐴 ) = 𝑥 ↔ ( 𝐴 + 𝑥 ) = 0 ) ) |
| 10 | 5 9 | bitrid | ⊢ ( 𝑥 ∈ ℂ → ( - 𝐴 = 𝑥 ↔ ( 𝐴 + 𝑥 ) = 0 ) ) |
| 11 | 3 10 | syl | ⊢ ( 𝑥 ∈ ℝ → ( - 𝐴 = 𝑥 ↔ ( 𝐴 + 𝑥 ) = 0 ) ) |
| 12 | eleq1a | ⊢ ( 𝑥 ∈ ℝ → ( - 𝐴 = 𝑥 → - 𝐴 ∈ ℝ ) ) | |
| 13 | 11 12 | sylbird | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝐴 + 𝑥 ) = 0 → - 𝐴 ∈ ℝ ) ) |
| 14 | 13 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 → - 𝐴 ∈ ℝ ) |
| 15 | 1 2 14 | mp2b | ⊢ - 𝐴 ∈ ℝ |