This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tgioo2.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| Assertion | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( 𝐽 ↾t ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgioo2.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 3 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | 1 | cnfldtopn | ⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 6 | eqid | ⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) | |
| 7 | 2 5 6 | metrest | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ ℝ ⊆ ℂ ) → ( 𝐽 ↾t ℝ ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) ) |
| 8 | 3 4 7 | mp2an | ⊢ ( 𝐽 ↾t ℝ ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 9 | 2 8 | tgioo | ⊢ ( topGen ‘ ran (,) ) = ( 𝐽 ↾t ℝ ) |