This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group with fewer than 6 elements is abelian. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| Assertion | lt6abl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → 𝐺 ∈ Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | 1 | grpbn0 | ⊢ ( 𝐺 ∈ Grp → 𝐵 ≠ ∅ ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → 𝐵 ≠ ∅ ) |
| 4 | 6re | ⊢ 6 ∈ ℝ | |
| 5 | rexr | ⊢ ( 6 ∈ ℝ → 6 ∈ ℝ* ) | |
| 6 | pnfnlt | ⊢ ( 6 ∈ ℝ* → ¬ +∞ < 6 ) | |
| 7 | 4 5 6 | mp2b | ⊢ ¬ +∞ < 6 |
| 8 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 9 | 8 | a1i | ⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ V ) |
| 10 | hashinf | ⊢ ( ( 𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) | |
| 11 | 9 10 | sylan | ⊢ ( ( 𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
| 12 | 11 | breq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) < 6 ↔ +∞ < 6 ) ) |
| 13 | 12 | biimpd | ⊢ ( ( 𝐺 ∈ Grp ∧ ¬ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) < 6 → +∞ < 6 ) ) |
| 14 | 13 | impancom | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → ( ¬ 𝐵 ∈ Fin → +∞ < 6 ) ) |
| 15 | 7 14 | mt3i | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → 𝐵 ∈ Fin ) |
| 16 | hashnncl | ⊢ ( 𝐵 ∈ Fin → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ 𝐵 ≠ ∅ ) ) |
| 18 | 3 17 | mpbird | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
| 19 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 20 | 18 19 | eleqtrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 21 | 6nn | ⊢ 6 ∈ ℕ | |
| 22 | 21 | nnzi | ⊢ 6 ∈ ℤ |
| 23 | 22 | a1i | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → 6 ∈ ℤ ) |
| 24 | simpr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → ( ♯ ‘ 𝐵 ) < 6 ) | |
| 25 | elfzo2 | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 6 ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 6 ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) < 6 ) ) | |
| 26 | 20 23 24 25 | syl3anbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 6 ) ) |
| 27 | df-6 | ⊢ 6 = ( 5 + 1 ) | |
| 28 | 27 | oveq2i | ⊢ ( 1 ..^ 6 ) = ( 1 ..^ ( 5 + 1 ) ) |
| 29 | 28 | eleq2i | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 6 ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 5 + 1 ) ) ) |
| 30 | 5nn | ⊢ 5 ∈ ℕ | |
| 31 | 30 19 | eleqtri | ⊢ 5 ∈ ( ℤ≥ ‘ 1 ) |
| 32 | fzosplitsni | ⊢ ( 5 ∈ ( ℤ≥ ‘ 1 ) → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 5 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) ∨ ( ♯ ‘ 𝐵 ) = 5 ) ) ) | |
| 33 | 31 32 | ax-mp | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 5 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) ∨ ( ♯ ‘ 𝐵 ) = 5 ) ) |
| 34 | 29 33 | bitri | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 6 ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) ∨ ( ♯ ‘ 𝐵 ) = 5 ) ) |
| 35 | df-5 | ⊢ 5 = ( 4 + 1 ) | |
| 36 | 35 | oveq2i | ⊢ ( 1 ..^ 5 ) = ( 1 ..^ ( 4 + 1 ) ) |
| 37 | 36 | eleq2i | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 4 + 1 ) ) ) |
| 38 | 4nn | ⊢ 4 ∈ ℕ | |
| 39 | 38 19 | eleqtri | ⊢ 4 ∈ ( ℤ≥ ‘ 1 ) |
| 40 | fzosplitsni | ⊢ ( 4 ∈ ( ℤ≥ ‘ 1 ) → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 4 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) ∨ ( ♯ ‘ 𝐵 ) = 4 ) ) ) | |
| 41 | 39 40 | ax-mp | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 4 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) ∨ ( ♯ ‘ 𝐵 ) = 4 ) ) |
| 42 | 37 41 | bitri | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) ∨ ( ♯ ‘ 𝐵 ) = 4 ) ) |
| 43 | df-4 | ⊢ 4 = ( 3 + 1 ) | |
| 44 | 43 | oveq2i | ⊢ ( 1 ..^ 4 ) = ( 1 ..^ ( 3 + 1 ) ) |
| 45 | 44 | eleq2i | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 3 + 1 ) ) ) |
| 46 | 3nn | ⊢ 3 ∈ ℕ | |
| 47 | 46 19 | eleqtri | ⊢ 3 ∈ ( ℤ≥ ‘ 1 ) |
| 48 | fzosplitsni | ⊢ ( 3 ∈ ( ℤ≥ ‘ 1 ) → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 3 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) ∨ ( ♯ ‘ 𝐵 ) = 3 ) ) ) | |
| 49 | 47 48 | ax-mp | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 3 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) ∨ ( ♯ ‘ 𝐵 ) = 3 ) ) |
| 50 | 45 49 | bitri | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) ∨ ( ♯ ‘ 𝐵 ) = 3 ) ) |
| 51 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 52 | 51 | oveq2i | ⊢ ( 1 ..^ 3 ) = ( 1 ..^ ( 2 + 1 ) ) |
| 53 | 52 | eleq2i | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 2 + 1 ) ) ) |
| 54 | 2eluzge1 | ⊢ 2 ∈ ( ℤ≥ ‘ 1 ) | |
| 55 | fzosplitsni | ⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 2 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ∨ ( ♯ ‘ 𝐵 ) = 2 ) ) ) | |
| 56 | 54 55 | ax-mp | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ ( 2 + 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ∨ ( ♯ ‘ 𝐵 ) = 2 ) ) |
| 57 | 53 56 | bitri | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) ↔ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ∨ ( ♯ ‘ 𝐵 ) = 2 ) ) |
| 58 | elsni | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ { 1 } → ( ♯ ‘ 𝐵 ) = 1 ) | |
| 59 | fzo12sn | ⊢ ( 1 ..^ 2 ) = { 1 } | |
| 60 | 58 59 | eleq2s | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) → ( ♯ ‘ 𝐵 ) = 1 ) |
| 61 | 60 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → ( ♯ ‘ 𝐵 ) = 1 ) |
| 62 | hash1 | ⊢ ( ♯ ‘ 1o ) = 1 | |
| 63 | 61 62 | eqtr4di | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 1o ) ) |
| 64 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 65 | 61 64 | eqeltrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 66 | hashclb | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) ) | |
| 67 | 8 66 | ax-mp | ⊢ ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 68 | 65 67 | sylibr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → 𝐵 ∈ Fin ) |
| 69 | 1onn | ⊢ 1o ∈ ω | |
| 70 | nnfi | ⊢ ( 1o ∈ ω → 1o ∈ Fin ) | |
| 71 | 69 70 | ax-mp | ⊢ 1o ∈ Fin |
| 72 | hashen | ⊢ ( ( 𝐵 ∈ Fin ∧ 1o ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 1o ) ↔ 𝐵 ≈ 1o ) ) | |
| 73 | 68 71 72 | sylancl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → ( ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 1o ) ↔ 𝐵 ≈ 1o ) ) |
| 74 | 63 73 | mpbid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → 𝐵 ≈ 1o ) |
| 75 | 1 | 0cyg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) → 𝐺 ∈ CycGrp ) |
| 76 | cygabl | ⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Abel ) | |
| 77 | 75 76 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ≈ 1o ) → 𝐺 ∈ Abel ) |
| 78 | 74 77 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ) → 𝐺 ∈ Abel ) |
| 79 | 78 | ex | ⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) → 𝐺 ∈ Abel ) ) |
| 80 | id | ⊢ ( ( ♯ ‘ 𝐵 ) = 2 → ( ♯ ‘ 𝐵 ) = 2 ) | |
| 81 | 2prm | ⊢ 2 ∈ ℙ | |
| 82 | 80 81 | eqeltrdi | ⊢ ( ( ♯ ‘ 𝐵 ) = 2 → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
| 83 | 1 | prmcyg | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → 𝐺 ∈ CycGrp ) |
| 84 | 83 76 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ℙ ) → 𝐺 ∈ Abel ) |
| 85 | 84 | ex | ⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) ∈ ℙ → 𝐺 ∈ Abel ) ) |
| 86 | 82 85 | syl5 | ⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) = 2 → 𝐺 ∈ Abel ) ) |
| 87 | 79 86 | jaod | ⊢ ( 𝐺 ∈ Grp → ( ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 2 ) ∨ ( ♯ ‘ 𝐵 ) = 2 ) → 𝐺 ∈ Abel ) ) |
| 88 | 57 87 | biimtrid | ⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) → 𝐺 ∈ Abel ) ) |
| 89 | id | ⊢ ( ( ♯ ‘ 𝐵 ) = 3 → ( ♯ ‘ 𝐵 ) = 3 ) | |
| 90 | 3prm | ⊢ 3 ∈ ℙ | |
| 91 | 89 90 | eqeltrdi | ⊢ ( ( ♯ ‘ 𝐵 ) = 3 → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
| 92 | 91 85 | syl5 | ⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) = 3 → 𝐺 ∈ Abel ) ) |
| 93 | 88 92 | jaod | ⊢ ( 𝐺 ∈ Grp → ( ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 3 ) ∨ ( ♯ ‘ 𝐵 ) = 3 ) → 𝐺 ∈ Abel ) ) |
| 94 | 50 93 | biimtrid | ⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) → 𝐺 ∈ Abel ) ) |
| 95 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → 𝐺 ∈ Grp ) | |
| 96 | 2z | ⊢ 2 ∈ ℤ | |
| 97 | eqid | ⊢ ( gEx ‘ 𝐺 ) = ( gEx ‘ 𝐺 ) | |
| 98 | eqid | ⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) | |
| 99 | 1 97 98 | gexdvds2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 2 ∈ ℤ ) → ( ( gEx ‘ 𝐺 ) ∥ 2 ↔ ∀ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) |
| 100 | 95 96 99 | sylancl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ( gEx ‘ 𝐺 ) ∥ 2 ↔ ∀ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) |
| 101 | 1 97 | gex2abl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( gEx ‘ 𝐺 ) ∥ 2 ) → 𝐺 ∈ Abel ) |
| 102 | 101 | ex | ⊢ ( 𝐺 ∈ Grp → ( ( gEx ‘ 𝐺 ) ∥ 2 → 𝐺 ∈ Abel ) ) |
| 103 | 102 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ( gEx ‘ 𝐺 ) ∥ 2 → 𝐺 ∈ Abel ) ) |
| 104 | 100 103 | sylbird | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 → 𝐺 ∈ Abel ) ) |
| 105 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐵 ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ↔ ¬ ∀ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) | |
| 106 | 95 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 𝐺 ∈ Grp ) |
| 107 | simprl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 𝑥 ∈ 𝐵 ) | |
| 108 | 1 98 | odcl | ⊢ ( 𝑥 ∈ 𝐵 → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) |
| 109 | 108 | ad2antrl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ) |
| 110 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 111 | 110 | a1i | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 4 ∈ ℕ0 ) |
| 112 | simpr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ♯ ‘ 𝐵 ) = 4 ) | |
| 113 | 112 110 | eqeltrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 114 | 113 67 | sylibr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → 𝐵 ∈ Fin ) |
| 115 | 114 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 𝐵 ∈ Fin ) |
| 116 | 1 98 | oddvds2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 117 | 106 115 107 116 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 118 | 112 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ♯ ‘ 𝐵 ) = 4 ) |
| 119 | 117 118 | breqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 4 ) |
| 120 | sq2 | ⊢ ( 2 ↑ 2 ) = 4 | |
| 121 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 122 | 96 | a1i | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 2 ∈ ℤ ) |
| 123 | 1 98 | odcl2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) |
| 124 | 106 115 107 123 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) |
| 125 | pccl | ⊢ ( ( 2 ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) → ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℕ0 ) | |
| 126 | 81 124 125 | sylancr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℕ0 ) |
| 127 | 126 | nn0zd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℤ ) |
| 128 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 129 | simprr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) | |
| 130 | dvdsexp | ⊢ ( ( 2 ∈ ℤ ∧ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℕ0 ∧ 1 ∈ ( ℤ≥ ‘ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) → ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ∥ ( 2 ↑ 1 ) ) | |
| 131 | 130 | 3expia | ⊢ ( ( 2 ∈ ℤ ∧ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℕ0 ) → ( 1 ∈ ( ℤ≥ ‘ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) → ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ∥ ( 2 ↑ 1 ) ) ) |
| 132 | 96 126 131 | sylancr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 1 ∈ ( ℤ≥ ‘ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) → ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ∥ ( 2 ↑ 1 ) ) ) |
| 133 | 1z | ⊢ 1 ∈ ℤ | |
| 134 | eluz | ⊢ ( ( ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( 1 ∈ ( ℤ≥ ‘ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 1 ) ) | |
| 135 | 127 133 134 | sylancl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 1 ∈ ( ℤ≥ ‘ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 1 ) ) |
| 136 | oveq2 | ⊢ ( 𝑛 = 2 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 2 ) ) | |
| 137 | 136 120 | eqtrdi | ⊢ ( 𝑛 = 2 → ( 2 ↑ 𝑛 ) = 4 ) |
| 138 | 137 | breq2d | ⊢ ( 𝑛 = 2 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 2 ↑ 𝑛 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 4 ) ) |
| 139 | 138 | rspcev | ⊢ ( ( 2 ∈ ℕ0 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 4 ) → ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 2 ↑ 𝑛 ) ) |
| 140 | 121 119 139 | sylancr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 2 ↑ 𝑛 ) ) |
| 141 | pcprmpw2 | ⊢ ( ( 2 ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 2 ↑ 𝑛 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) | |
| 142 | 81 124 141 | sylancr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 2 ↑ 𝑛 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
| 143 | 140 142 | mpbid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 144 | 143 | eqcomd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 145 | 2cn | ⊢ 2 ∈ ℂ | |
| 146 | exp1 | ⊢ ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 ) | |
| 147 | 145 146 | ax-mp | ⊢ ( 2 ↑ 1 ) = 2 |
| 148 | 147 | a1i | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 ↑ 1 ) = 2 ) |
| 149 | 144 148 | breq12d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ∥ ( 2 ↑ 1 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) |
| 150 | 132 135 149 | 3imtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 1 → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) |
| 151 | 129 150 | mtod | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ¬ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 1 ) |
| 152 | 1re | ⊢ 1 ∈ ℝ | |
| 153 | 126 | nn0red | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 154 | ltnle | ⊢ ( ( 1 ∈ ℝ ∧ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℝ ) → ( 1 < ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↔ ¬ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 1 ) ) | |
| 155 | 152 153 154 | sylancr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 1 < ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↔ ¬ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ≤ 1 ) ) |
| 156 | 151 155 | mpbird | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 1 < ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 157 | nn0ltp1le | ⊢ ( ( 1 ∈ ℕ0 ∧ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℕ0 ) → ( 1 < ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↔ ( 1 + 1 ) ≤ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) | |
| 158 | 64 126 157 | sylancr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 1 < ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ↔ ( 1 + 1 ) ≤ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 159 | 156 158 | mpbid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 1 + 1 ) ≤ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 160 | 128 159 | eqbrtrid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 2 ≤ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 161 | eluz2 | ⊢ ( ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ℤ ∧ 2 ≤ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) | |
| 162 | 122 127 160 161 | syl3anbrc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 163 | dvdsexp | ⊢ ( ( 2 ∈ ℤ ∧ 2 ∈ ℕ0 ∧ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 2 ↑ 2 ) ∥ ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) | |
| 164 | 96 121 162 163 | mp3an12i | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( 2 ↑ 2 ) ∥ ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 165 | 120 164 | eqbrtrrid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 4 ∥ ( 2 ↑ ( 2 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 166 | 165 143 | breqtrrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 4 ∥ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 167 | dvdseq | ⊢ ( ( ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ0 ∧ 4 ∈ ℕ0 ) ∧ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 4 ∧ 4 ∥ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 4 ) | |
| 168 | 109 111 119 166 167 | syl22anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = 4 ) |
| 169 | 168 118 | eqtr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( ♯ ‘ 𝐵 ) ) |
| 170 | 1 98 106 107 169 | iscygodd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 𝐺 ∈ CycGrp ) |
| 171 | 170 76 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 ) ) → 𝐺 ∈ Abel ) |
| 172 | 171 | rexlimdvaa | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ∃ 𝑥 ∈ 𝐵 ¬ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 → 𝐺 ∈ Abel ) ) |
| 173 | 105 172 | biimtrrid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → ( ¬ ∀ 𝑥 ∈ 𝐵 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ 2 → 𝐺 ∈ Abel ) ) |
| 174 | 104 173 | pm2.61d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) = 4 ) → 𝐺 ∈ Abel ) |
| 175 | 174 | ex | ⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) = 4 → 𝐺 ∈ Abel ) ) |
| 176 | 94 175 | jaod | ⊢ ( 𝐺 ∈ Grp → ( ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 4 ) ∨ ( ♯ ‘ 𝐵 ) = 4 ) → 𝐺 ∈ Abel ) ) |
| 177 | 42 176 | biimtrid | ⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) → 𝐺 ∈ Abel ) ) |
| 178 | id | ⊢ ( ( ♯ ‘ 𝐵 ) = 5 → ( ♯ ‘ 𝐵 ) = 5 ) | |
| 179 | 5prm | ⊢ 5 ∈ ℙ | |
| 180 | 178 179 | eqeltrdi | ⊢ ( ( ♯ ‘ 𝐵 ) = 5 → ( ♯ ‘ 𝐵 ) ∈ ℙ ) |
| 181 | 180 85 | syl5 | ⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) = 5 → 𝐺 ∈ Abel ) ) |
| 182 | 177 181 | jaod | ⊢ ( 𝐺 ∈ Grp → ( ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 5 ) ∨ ( ♯ ‘ 𝐵 ) = 5 ) → 𝐺 ∈ Abel ) ) |
| 183 | 34 182 | biimtrid | ⊢ ( 𝐺 ∈ Grp → ( ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 6 ) → 𝐺 ∈ Abel ) ) |
| 184 | 183 | imp | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) ∈ ( 1 ..^ 6 ) ) → 𝐺 ∈ Abel ) |
| 185 | 26 184 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝐵 ) < 6 ) → 𝐺 ∈ Abel ) |