This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcprmpw2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝐴 ∈ ℕ ) | |
| 2 | 1 | nnnn0d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝐴 ∈ ℕ0 ) |
| 3 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝑃 ∈ ℕ ) |
| 5 | pccl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) | |
| 6 | 5 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
| 7 | 4 6 | nnexpcld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ ) |
| 8 | 7 | nnnn0d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ0 ) |
| 9 | 6 | nn0red | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ ) |
| 10 | 9 | leidd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
| 11 | simpll | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝑃 ∈ ℙ ) | |
| 12 | 6 | nn0zd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℤ ) |
| 13 | pcid | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 pCnt 𝐴 ) ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) = ( 𝑃 pCnt 𝐴 ) ) | |
| 14 | 11 12 13 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 15 | 10 14 | breqtrrd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 16 | 15 | ad2antrr | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 17 | simpr | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 ) | |
| 18 | 17 | oveq1d | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) |
| 19 | 17 | oveq1d | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) = ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 20 | 16 18 19 | 3brtr4d | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 21 | simplrr | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) | |
| 22 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 23 | 22 | adantl | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 24 | 1 | adantr | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℕ ) |
| 25 | 24 | nnzd | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
| 26 | simprl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝑛 ∈ ℕ0 ) | |
| 27 | 4 26 | nnexpcld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 ↑ 𝑛 ) ∈ ℕ ) |
| 28 | 27 | adantr | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ↑ 𝑛 ) ∈ ℕ ) |
| 29 | 28 | nnzd | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ↑ 𝑛 ) ∈ ℤ ) |
| 30 | dvdstr | ⊢ ( ( 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( 𝑃 ↑ 𝑛 ) ∈ ℤ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) → 𝑝 ∥ ( 𝑃 ↑ 𝑛 ) ) ) | |
| 31 | 23 25 29 30 | syl3anc | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) → 𝑝 ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
| 32 | 21 31 | mpan2d | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝐴 → 𝑝 ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
| 33 | simpr | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) | |
| 34 | 11 | adantr | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝑃 ∈ ℙ ) |
| 35 | simplrl | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝑛 ∈ ℕ0 ) | |
| 36 | prmdvdsexpr | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝑛 ) → 𝑝 = 𝑃 ) ) | |
| 37 | 33 34 35 36 | syl3anc | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝑛 ) → 𝑝 = 𝑃 ) ) |
| 38 | 32 37 | syld | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝐴 → 𝑝 = 𝑃 ) ) |
| 39 | 38 | necon3ad | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ≠ 𝑃 → ¬ 𝑝 ∥ 𝐴 ) ) |
| 40 | 39 | imp | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ¬ 𝑝 ∥ 𝐴 ) |
| 41 | simplr | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → 𝑝 ∈ ℙ ) | |
| 42 | 1 | ad2antrr | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → 𝐴 ∈ ℕ ) |
| 43 | pceq0 | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑝 pCnt 𝐴 ) = 0 ↔ ¬ 𝑝 ∥ 𝐴 ) ) | |
| 44 | 41 42 43 | syl2anc | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( ( 𝑝 pCnt 𝐴 ) = 0 ↔ ¬ 𝑝 ∥ 𝐴 ) ) |
| 45 | 40 44 | mpbird | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt 𝐴 ) = 0 ) |
| 46 | 7 | ad2antrr | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ ) |
| 47 | 41 46 | pccld | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ∈ ℕ0 ) |
| 48 | 47 | nn0ge0d | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → 0 ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 49 | 45 48 | eqbrtrd | ⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 50 | 20 49 | pm2.61dane | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 51 | 50 | ralrimiva | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 52 | 1 | nnzd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝐴 ∈ ℤ ) |
| 53 | 7 | nnzd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ ) |
| 54 | pc2dvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ ) → ( 𝐴 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) ) | |
| 55 | 52 53 54 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝐴 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) ) |
| 56 | 51 55 | mpbird | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝐴 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) |
| 57 | pcdvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) | |
| 58 | 57 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) |
| 59 | dvdseq | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ0 ) ∧ ( 𝐴 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) ) → 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) | |
| 60 | 2 8 56 58 59 | syl22anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) |
| 61 | 60 | rexlimdvaa | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) → 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 62 | 3 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → 𝑃 ∈ ℕ ) |
| 63 | 62 5 | nnexpcld | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ ) |
| 64 | 63 | nnzd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ ) |
| 65 | iddvds | ⊢ ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) | |
| 66 | 64 65 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) |
| 67 | oveq2 | ⊢ ( 𝑛 = ( 𝑃 pCnt 𝐴 ) → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) | |
| 68 | 67 | breq2d | ⊢ ( 𝑛 = ( 𝑃 pCnt 𝐴 ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 69 | 68 | rspcev | ⊢ ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 70 | 5 66 69 | syl2anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ∃ 𝑛 ∈ ℕ0 ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 71 | breq1 | ⊢ ( 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ 𝑛 ) ) ) | |
| 72 | 71 | rexbidv | ⊢ ( 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
| 73 | 70 72 | syl5ibrcom | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
| 74 | 61 73 | impbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |